Breast Mass Classification Using Diverse Contextual Information and Convolutional Neural Network
Masses are one of the early signs of breast cancer, and the survival rate of women suffering from breast cancer can be improved if masses can be correctly identified as benign or malignant. However, their classification is challenging due to the similarity in texture patterns of both types of mass....
Guardado en:
Autores principales: | Mariam Busaleh, Muhammad Hussain, Hatim A. Aboalsamh, Fazal-e- Amin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ea482e8921f4486eaf23f5b16f1dce7e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Convolutional neural network with group theory and random selection particle swarm optimizer for enhancing cancer image classification
por: Kun Lan, et al.
Publicado: (2021) -
Bagging and Boosting Ensemble Classifiers for Classification of Multispectral, Hyperspectral and PolSAR Data: A Comparative Evaluation
por: Hamid Jafarzadeh, et al.
Publicado: (2021) -
A model for predicting drug-disease associations based on dense convolutional attention network
por: Huiqing Wang, et al.
Publicado: (2021) -
An ensemble framework based on Deep CNNs architecture for glaucoma classification using fundus photography
por: Aziz-ur-Rehman, et al.
Publicado: (2021) -
Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition
por: Ravichandra Madanu, et al.
Publicado: (2021)