Breast Mass Classification Using Diverse Contextual Information and Convolutional Neural Network
Masses are one of the early signs of breast cancer, and the survival rate of women suffering from breast cancer can be improved if masses can be correctly identified as benign or malignant. However, their classification is challenging due to the similarity in texture patterns of both types of mass....
Enregistré dans:
Auteurs principaux: | Mariam Busaleh, Muhammad Hussain, Hatim A. Aboalsamh, Fazal-e- Amin |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ea482e8921f4486eaf23f5b16f1dce7e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Convolutional neural network with group theory and random selection particle swarm optimizer for enhancing cancer image classification
par: Kun Lan, et autres
Publié: (2021) -
Bagging and Boosting Ensemble Classifiers for Classification of Multispectral, Hyperspectral and PolSAR Data: A Comparative Evaluation
par: Hamid Jafarzadeh, et autres
Publié: (2021) -
A model for predicting drug-disease associations based on dense convolutional attention network
par: Huiqing Wang, et autres
Publié: (2021) -
An ensemble framework based on Deep CNNs architecture for glaucoma classification using fundus photography
par: Aziz-ur-Rehman, et autres
Publié: (2021) -
Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition
par: Ravichandra Madanu, et autres
Publié: (2021)