Probabilistic approach to predicting substrate specificity of methyltransferases.
We present a general probabilistic framework for predicting the substrate specificity of enzymes. We designed this approach to be easily applicable to different organisms and enzymes. Therefore, our predictive models do not rely on species-specific properties and use mostly sequence-derived data. Ma...
Enregistré dans:
Auteurs principaux: | Teresa Szczepińska, Jan Kutner, Michał Kopczyński, Krzysztof Pawłowski, Andrzej Dziembowski, Andrzej Kudlicki, Krzysztof Ginalski, Maga Rowicka |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2014
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ea542f2c61514b8b97d558b23c4cb478 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A novel protein kinase-like domain in a selenoprotein, widespread in the tree of life.
par: Małgorzata Dudkiewicz, et autres
Publié: (2012) -
Brain systems for probabilistic and dynamic prediction: computational specificity and integration.
par: Jill X O'Reilly, et autres
Publié: (2013) -
Substrate specificity of human MCPIP1 endoribonuclease
par: Mateusz Wilamowski, et autres
Publié: (2018) -
Neural substrates of cognitive biases during probabilistic inference
par: Alireza Soltani, et autres
Publié: (2016) -
qDSB-Seq is a general method for genome-wide quantification of DNA double-strand breaks using sequencing
par: Yingjie Zhu, et autres
Publié: (2019)