Simulated Galactic Cosmic Rays Modify Mitochondrial Metabolism in Osteoclasts, Increase Osteoclastogenesis and Cause Trabecular Bone Loss in Mice

Space is a high-stress environment. One major risk factor for the astronauts when they leave the Earth’s magnetic field is exposure to ionizing radiation from galactic cosmic rays (GCR). Several adverse changes occur in mammalian anatomy and physiology in space, including bone loss. In this study, w...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ha-Neui Kim, Kimberly K. Richardson, Kimberly J. Krager, Wen Ling, Pilar Simmons, Antino R. Allen, Nukhet Aykin-Burns
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/ea5509a57bbc4d969257a54e3e8efaf2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ea5509a57bbc4d969257a54e3e8efaf2
record_format dspace
spelling oai:doaj.org-article:ea5509a57bbc4d969257a54e3e8efaf22021-11-11T17:10:08ZSimulated Galactic Cosmic Rays Modify Mitochondrial Metabolism in Osteoclasts, Increase Osteoclastogenesis and Cause Trabecular Bone Loss in Mice10.3390/ijms2221117111422-00671661-6596https://doaj.org/article/ea5509a57bbc4d969257a54e3e8efaf22021-10-01T00:00:00Zhttps://www.mdpi.com/1422-0067/22/21/11711https://doaj.org/toc/1661-6596https://doaj.org/toc/1422-0067Space is a high-stress environment. One major risk factor for the astronauts when they leave the Earth’s magnetic field is exposure to ionizing radiation from galactic cosmic rays (GCR). Several adverse changes occur in mammalian anatomy and physiology in space, including bone loss. In this study, we assessed the effects of simplified GCR exposure on skeletal health in vivo. Three months following exposure to 0.5 Gy total body simulated GCR, blood, bone marrow and tissue were collected from 9 months old male mice. The key findings from our cell and tissue analysis are (1) GCR induced femoral trabecular bone loss in adult mice but had no effect on spinal trabecular bone. (2) GCR increased circulating osteoclast differentiation markers and osteoclast formation but did not alter new bone formation or osteoblast differentiation. (3) Steady-state levels of mitochondrial reactive oxygen species, mitochondrial and non-mitochondrial respiration were increased without any changes in mitochondrial mass in pre-osteoclasts after GCR exposure. (4) Alterations in substrate utilization following GCR exposure in pre-osteoclasts suggested a metabolic rewiring of mitochondria. Taken together, targeting radiation-mediated mitochondrial metabolic reprogramming of osteoclasts could be speculated as a viable therapeutic strategy for space travel induced bone loss.Ha-Neui KimKimberly K. RichardsonKimberly J. KragerWen LingPilar SimmonsAntino R. AllenNukhet Aykin-BurnsMDPI AGarticlegalactic cosmic raysspace radiationbone lossosteoclastosteoblastmitochondriaBiology (General)QH301-705.5ChemistryQD1-999ENInternational Journal of Molecular Sciences, Vol 22, Iss 11711, p 11711 (2021)
institution DOAJ
collection DOAJ
language EN
topic galactic cosmic rays
space radiation
bone loss
osteoclast
osteoblast
mitochondria
Biology (General)
QH301-705.5
Chemistry
QD1-999
spellingShingle galactic cosmic rays
space radiation
bone loss
osteoclast
osteoblast
mitochondria
Biology (General)
QH301-705.5
Chemistry
QD1-999
Ha-Neui Kim
Kimberly K. Richardson
Kimberly J. Krager
Wen Ling
Pilar Simmons
Antino R. Allen
Nukhet Aykin-Burns
Simulated Galactic Cosmic Rays Modify Mitochondrial Metabolism in Osteoclasts, Increase Osteoclastogenesis and Cause Trabecular Bone Loss in Mice
description Space is a high-stress environment. One major risk factor for the astronauts when they leave the Earth’s magnetic field is exposure to ionizing radiation from galactic cosmic rays (GCR). Several adverse changes occur in mammalian anatomy and physiology in space, including bone loss. In this study, we assessed the effects of simplified GCR exposure on skeletal health in vivo. Three months following exposure to 0.5 Gy total body simulated GCR, blood, bone marrow and tissue were collected from 9 months old male mice. The key findings from our cell and tissue analysis are (1) GCR induced femoral trabecular bone loss in adult mice but had no effect on spinal trabecular bone. (2) GCR increased circulating osteoclast differentiation markers and osteoclast formation but did not alter new bone formation or osteoblast differentiation. (3) Steady-state levels of mitochondrial reactive oxygen species, mitochondrial and non-mitochondrial respiration were increased without any changes in mitochondrial mass in pre-osteoclasts after GCR exposure. (4) Alterations in substrate utilization following GCR exposure in pre-osteoclasts suggested a metabolic rewiring of mitochondria. Taken together, targeting radiation-mediated mitochondrial metabolic reprogramming of osteoclasts could be speculated as a viable therapeutic strategy for space travel induced bone loss.
format article
author Ha-Neui Kim
Kimberly K. Richardson
Kimberly J. Krager
Wen Ling
Pilar Simmons
Antino R. Allen
Nukhet Aykin-Burns
author_facet Ha-Neui Kim
Kimberly K. Richardson
Kimberly J. Krager
Wen Ling
Pilar Simmons
Antino R. Allen
Nukhet Aykin-Burns
author_sort Ha-Neui Kim
title Simulated Galactic Cosmic Rays Modify Mitochondrial Metabolism in Osteoclasts, Increase Osteoclastogenesis and Cause Trabecular Bone Loss in Mice
title_short Simulated Galactic Cosmic Rays Modify Mitochondrial Metabolism in Osteoclasts, Increase Osteoclastogenesis and Cause Trabecular Bone Loss in Mice
title_full Simulated Galactic Cosmic Rays Modify Mitochondrial Metabolism in Osteoclasts, Increase Osteoclastogenesis and Cause Trabecular Bone Loss in Mice
title_fullStr Simulated Galactic Cosmic Rays Modify Mitochondrial Metabolism in Osteoclasts, Increase Osteoclastogenesis and Cause Trabecular Bone Loss in Mice
title_full_unstemmed Simulated Galactic Cosmic Rays Modify Mitochondrial Metabolism in Osteoclasts, Increase Osteoclastogenesis and Cause Trabecular Bone Loss in Mice
title_sort simulated galactic cosmic rays modify mitochondrial metabolism in osteoclasts, increase osteoclastogenesis and cause trabecular bone loss in mice
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/ea5509a57bbc4d969257a54e3e8efaf2
work_keys_str_mv AT haneuikim simulatedgalacticcosmicraysmodifymitochondrialmetabolisminosteoclastsincreaseosteoclastogenesisandcausetrabecularbonelossinmice
AT kimberlykrichardson simulatedgalacticcosmicraysmodifymitochondrialmetabolisminosteoclastsincreaseosteoclastogenesisandcausetrabecularbonelossinmice
AT kimberlyjkrager simulatedgalacticcosmicraysmodifymitochondrialmetabolisminosteoclastsincreaseosteoclastogenesisandcausetrabecularbonelossinmice
AT wenling simulatedgalacticcosmicraysmodifymitochondrialmetabolisminosteoclastsincreaseosteoclastogenesisandcausetrabecularbonelossinmice
AT pilarsimmons simulatedgalacticcosmicraysmodifymitochondrialmetabolisminosteoclastsincreaseosteoclastogenesisandcausetrabecularbonelossinmice
AT antinorallen simulatedgalacticcosmicraysmodifymitochondrialmetabolisminosteoclastsincreaseosteoclastogenesisandcausetrabecularbonelossinmice
AT nukhetaykinburns simulatedgalacticcosmicraysmodifymitochondrialmetabolisminosteoclastsincreaseosteoclastogenesisandcausetrabecularbonelossinmice
_version_ 1718432210266095616