Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles

Jana Danková,1,2 Matej Buzgo,1,3,4 Jana Vejpravová,5 Simona Kubíčková,5 Věra Sovková,1,2 Lucie Vysloužilová,4,6 Alice Mantlíková,5 Alois Nečas,7 Evžen Amler1–31Laboratory of Tissue Engineering, Institut...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daňková J, Buzgo M, Vejpravová J, Kubíčková S, Sovková V, Vysloužilová L, Mantlíková A, Nečas A, Amler E
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2015
Materias:
Acceso en línea:https://doaj.org/article/ea631cfb481f431bbaaadf36971705fc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ea631cfb481f431bbaaadf36971705fc
record_format dspace
spelling oai:doaj.org-article:ea631cfb481f431bbaaadf36971705fc2021-12-02T05:04:29ZHighly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles1178-2013https://doaj.org/article/ea631cfb481f431bbaaadf36971705fc2015-12-01T00:00:00Zhttps://www.dovepress.com/highly-efficient-mesenchymal-stem-cell-proliferation-on-poly-epsilon-c-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Jana Danková,1,2 Matej Buzgo,1,3,4 Jana Vejpravová,5 Simona Kubíčková,5 Věra Sovková,1,2 Lucie Vysloužilová,4,6 Alice Mantlíková,5 Alois Nečas,7 Evžen Amler1–31Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2Institute of Biophysics, Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic; 3Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic; 4University Center for Energy Efficient Buildings, Czech Technical University in Prague, Bustehrad, Czech Republic; 5Department of Magnetic Nanosystems, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 6Department of Nonwoven Textiles, Faculty of Textile Engineering, Technical University of Liberec, Liberec, Czech Republic; 7Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech RepublicAbstract: In this study, we have developed a combined approach to accelerate the proliferation of mesenchymal stem cells (MSCs) in vitro, using a new nanofibrous scaffold made by needleless electrospinning from a mixture of poly-ε-caprolactone and magnetic particles. The biological characteristics of porcine MSCs were investigated while cultured in vitro on composite scaffold enriched with magnetic nanoparticles. Our data indicate that due to the synergic effect of the poly-ε-caprolactone nanofibers and magnetic particles, cellular adhesion and proliferation of MSCs is enhanced and osteogenic differentiation is supported. The cellular and physical attributes make this new scaffold very promising for the acceleration of efficient MSC proliferation and regeneration of hard tissues.Keywords: magnetic particles, mesenchymal stem cells, nanofibers, tissue engineering Daňková JBuzgo MVejpravová JKubíčková SSovková VVysloužilová LMantlíková ANečas AAmler EDove Medical PressarticleMagnetic particlesmesenchymal stem cellsnanofiberstissue engineeringMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2015, Iss default, Pp 7307-7317 (2015)
institution DOAJ
collection DOAJ
language EN
topic Magnetic particles
mesenchymal stem cells
nanofibers
tissue engineering
Medicine (General)
R5-920
spellingShingle Magnetic particles
mesenchymal stem cells
nanofibers
tissue engineering
Medicine (General)
R5-920
Daňková J
Buzgo M
Vejpravová J
Kubíčková S
Sovková V
Vysloužilová L
Mantlíková A
Nečas A
Amler E
Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles
description Jana Danková,1,2 Matej Buzgo,1,3,4 Jana Vejpravová,5 Simona Kubíčková,5 Věra Sovková,1,2 Lucie Vysloužilová,4,6 Alice Mantlíková,5 Alois Nečas,7 Evžen Amler1–31Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2Institute of Biophysics, Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic; 3Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic; 4University Center for Energy Efficient Buildings, Czech Technical University in Prague, Bustehrad, Czech Republic; 5Department of Magnetic Nanosystems, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 6Department of Nonwoven Textiles, Faculty of Textile Engineering, Technical University of Liberec, Liberec, Czech Republic; 7Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech RepublicAbstract: In this study, we have developed a combined approach to accelerate the proliferation of mesenchymal stem cells (MSCs) in vitro, using a new nanofibrous scaffold made by needleless electrospinning from a mixture of poly-ε-caprolactone and magnetic particles. The biological characteristics of porcine MSCs were investigated while cultured in vitro on composite scaffold enriched with magnetic nanoparticles. Our data indicate that due to the synergic effect of the poly-ε-caprolactone nanofibers and magnetic particles, cellular adhesion and proliferation of MSCs is enhanced and osteogenic differentiation is supported. The cellular and physical attributes make this new scaffold very promising for the acceleration of efficient MSC proliferation and regeneration of hard tissues.Keywords: magnetic particles, mesenchymal stem cells, nanofibers, tissue engineering 
format article
author Daňková J
Buzgo M
Vejpravová J
Kubíčková S
Sovková V
Vysloužilová L
Mantlíková A
Nečas A
Amler E
author_facet Daňková J
Buzgo M
Vejpravová J
Kubíčková S
Sovková V
Vysloužilová L
Mantlíková A
Nečas A
Amler E
author_sort Daňková J
title Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles
title_short Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles
title_full Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles
title_fullStr Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles
title_full_unstemmed Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles
title_sort highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles
publisher Dove Medical Press
publishDate 2015
url https://doaj.org/article/ea631cfb481f431bbaaadf36971705fc
work_keys_str_mv AT dankovaacutej highlyefficientmesenchymalstemcellproliferationonpolyepsiloncaprolactonenanofiberswithembeddedmagneticnanoparticles
AT buzgom highlyefficientmesenchymalstemcellproliferationonpolyepsiloncaprolactonenanofiberswithembeddedmagneticnanoparticles
AT vejpravovaacutej highlyefficientmesenchymalstemcellproliferationonpolyepsiloncaprolactonenanofiberswithembeddedmagneticnanoparticles
AT kubiacuteckovaacutes highlyefficientmesenchymalstemcellproliferationonpolyepsiloncaprolactonenanofiberswithembeddedmagneticnanoparticles
AT sovkovaacutev highlyefficientmesenchymalstemcellproliferationonpolyepsiloncaprolactonenanofiberswithembeddedmagneticnanoparticles
AT vyslouzilovaacutel highlyefficientmesenchymalstemcellproliferationonpolyepsiloncaprolactonenanofiberswithembeddedmagneticnanoparticles
AT mantliacutekovaacutea highlyefficientmesenchymalstemcellproliferationonpolyepsiloncaprolactonenanofiberswithembeddedmagneticnanoparticles
AT necasa highlyefficientmesenchymalstemcellproliferationonpolyepsiloncaprolactonenanofiberswithembeddedmagneticnanoparticles
AT amlere highlyefficientmesenchymalstemcellproliferationonpolyepsiloncaprolactonenanofiberswithembeddedmagneticnanoparticles
_version_ 1718400686395228160