Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles
Jana Danková,1,2 Matej Buzgo,1,3,4 Jana Vejpravová,5 Simona Kubíčková,5 Věra Sovková,1,2 Lucie Vysloužilová,4,6 Alice Mantlíková,5 Alois Nečas,7 Evžen Amler1–31Laboratory of Tissue Engineering, Institut...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2015
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ea631cfb481f431bbaaadf36971705fc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ea631cfb481f431bbaaadf36971705fc |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ea631cfb481f431bbaaadf36971705fc2021-12-02T05:04:29ZHighly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles1178-2013https://doaj.org/article/ea631cfb481f431bbaaadf36971705fc2015-12-01T00:00:00Zhttps://www.dovepress.com/highly-efficient-mesenchymal-stem-cell-proliferation-on-poly-epsilon-c-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Jana Danková,1,2 Matej Buzgo,1,3,4 Jana Vejpravová,5 Simona Kubíčková,5 Věra Sovková,1,2 Lucie Vysloužilová,4,6 Alice Mantlíková,5 Alois Nečas,7 Evžen Amler1–31Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2Institute of Biophysics, Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic; 3Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic; 4University Center for Energy Efficient Buildings, Czech Technical University in Prague, Bustehrad, Czech Republic; 5Department of Magnetic Nanosystems, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 6Department of Nonwoven Textiles, Faculty of Textile Engineering, Technical University of Liberec, Liberec, Czech Republic; 7Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech RepublicAbstract: In this study, we have developed a combined approach to accelerate the proliferation of mesenchymal stem cells (MSCs) in vitro, using a new nanofibrous scaffold made by needleless electrospinning from a mixture of poly-ε-caprolactone and magnetic particles. The biological characteristics of porcine MSCs were investigated while cultured in vitro on composite scaffold enriched with magnetic nanoparticles. Our data indicate that due to the synergic effect of the poly-ε-caprolactone nanofibers and magnetic particles, cellular adhesion and proliferation of MSCs is enhanced and osteogenic differentiation is supported. The cellular and physical attributes make this new scaffold very promising for the acceleration of efficient MSC proliferation and regeneration of hard tissues.Keywords: magnetic particles, mesenchymal stem cells, nanofibers, tissue engineering Daňková JBuzgo MVejpravová JKubíčková SSovková VVysloužilová LMantlíková ANečas AAmler EDove Medical PressarticleMagnetic particlesmesenchymal stem cellsnanofiberstissue engineeringMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2015, Iss default, Pp 7307-7317 (2015) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Magnetic particles mesenchymal stem cells nanofibers tissue engineering Medicine (General) R5-920 |
spellingShingle |
Magnetic particles mesenchymal stem cells nanofibers tissue engineering Medicine (General) R5-920 Daňková J Buzgo M Vejpravová J Kubíčková S Sovková V Vysloužilová L Mantlíková A Nečas A Amler E Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles |
description |
Jana Danková,1,2 Matej Buzgo,1,3,4 Jana Vejpravová,5 Simona Kubíčková,5 Věra Sovková,1,2 Lucie Vysloužilová,4,6 Alice Mantlíková,5 Alois Nečas,7 Evžen Amler1–31Laboratory of Tissue Engineering, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2Institute of Biophysics, Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic; 3Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic; 4University Center for Energy Efficient Buildings, Czech Technical University in Prague, Bustehrad, Czech Republic; 5Department of Magnetic Nanosystems, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 6Department of Nonwoven Textiles, Faculty of Textile Engineering, Technical University of Liberec, Liberec, Czech Republic; 7Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech RepublicAbstract: In this study, we have developed a combined approach to accelerate the proliferation of mesenchymal stem cells (MSCs) in vitro, using a new nanofibrous scaffold made by needleless electrospinning from a mixture of poly-ε-caprolactone and magnetic particles. The biological characteristics of porcine MSCs were investigated while cultured in vitro on composite scaffold enriched with magnetic nanoparticles. Our data indicate that due to the synergic effect of the poly-ε-caprolactone nanofibers and magnetic particles, cellular adhesion and proliferation of MSCs is enhanced and osteogenic differentiation is supported. The cellular and physical attributes make this new scaffold very promising for the acceleration of efficient MSC proliferation and regeneration of hard tissues.Keywords: magnetic particles, mesenchymal stem cells, nanofibers, tissue engineering |
format |
article |
author |
Daňková J Buzgo M Vejpravová J Kubíčková S Sovková V Vysloužilová L Mantlíková A Nečas A Amler E |
author_facet |
Daňková J Buzgo M Vejpravová J Kubíčková S Sovková V Vysloužilová L Mantlíková A Nečas A Amler E |
author_sort |
Daňková J |
title |
Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles |
title_short |
Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles |
title_full |
Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles |
title_fullStr |
Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles |
title_full_unstemmed |
Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles |
title_sort |
highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles |
publisher |
Dove Medical Press |
publishDate |
2015 |
url |
https://doaj.org/article/ea631cfb481f431bbaaadf36971705fc |
work_keys_str_mv |
AT dankovaacutej highlyefficientmesenchymalstemcellproliferationonpolyepsiloncaprolactonenanofiberswithembeddedmagneticnanoparticles AT buzgom highlyefficientmesenchymalstemcellproliferationonpolyepsiloncaprolactonenanofiberswithembeddedmagneticnanoparticles AT vejpravovaacutej highlyefficientmesenchymalstemcellproliferationonpolyepsiloncaprolactonenanofiberswithembeddedmagneticnanoparticles AT kubiacuteckovaacutes highlyefficientmesenchymalstemcellproliferationonpolyepsiloncaprolactonenanofiberswithembeddedmagneticnanoparticles AT sovkovaacutev highlyefficientmesenchymalstemcellproliferationonpolyepsiloncaprolactonenanofiberswithembeddedmagneticnanoparticles AT vyslouzilovaacutel highlyefficientmesenchymalstemcellproliferationonpolyepsiloncaprolactonenanofiberswithembeddedmagneticnanoparticles AT mantliacutekovaacutea highlyefficientmesenchymalstemcellproliferationonpolyepsiloncaprolactonenanofiberswithembeddedmagneticnanoparticles AT necasa highlyefficientmesenchymalstemcellproliferationonpolyepsiloncaprolactonenanofiberswithembeddedmagneticnanoparticles AT amlere highlyefficientmesenchymalstemcellproliferationonpolyepsiloncaprolactonenanofiberswithembeddedmagneticnanoparticles |
_version_ |
1718400686395228160 |