Attention Mask R-CNN for Ship Detection and Segmentation From Remote Sensing Images
In recent years, ship detection in satellite remote sensing images has become an important research topic. Most existing methods detect ships by using a rectangular bounding box but do not perform segmentation down to the pixel level. This paper proposes a ship detection and segmentation method base...
Guardado en:
Autores principales: | Xuan Nie, Mengyang Duan, Haoxuan Ding, Bingliang Hu, Edward K. Wong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ea643b7985fb4a7bb90c8ca63e24c9e2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Constraint Loss for Rotated Object Detection in Remote Sensing Images
por: Luyang Zhang, et al.
Publicado: (2021) -
Cascaded Segmented Matting Network for Human Matting
por: Bo Liu, et al.
Publicado: (2021) -
SGA-Net: Self-Constructing Graph Attention Neural Network for Semantic Segmentation of Remote Sensing Images
por: Wenjie Zi, et al.
Publicado: (2021) -
Improved Oriented Object Detection in Remote Sensing Images Based on a Three-Point Regression Method
por: Falin Wu, et al.
Publicado: (2021) -
Rotation-Invariant and Relation-Aware Cross-Domain Adaptation Object Detection Network for Optical Remote Sensing Images
por: Ying Chen, et al.
Publicado: (2021)