Attention Mask R-CNN for Ship Detection and Segmentation From Remote Sensing Images
In recent years, ship detection in satellite remote sensing images has become an important research topic. Most existing methods detect ships by using a rectangular bounding box but do not perform segmentation down to the pixel level. This paper proposes a ship detection and segmentation method base...
Enregistré dans:
Auteurs principaux: | Xuan Nie, Mengyang Duan, Haoxuan Ding, Bingliang Hu, Edward K. Wong |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ea643b7985fb4a7bb90c8ca63e24c9e2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Constraint Loss for Rotated Object Detection in Remote Sensing Images
par: Luyang Zhang, et autres
Publié: (2021) -
Cascaded Segmented Matting Network for Human Matting
par: Bo Liu, et autres
Publié: (2021) -
SGA-Net: Self-Constructing Graph Attention Neural Network for Semantic Segmentation of Remote Sensing Images
par: Wenjie Zi, et autres
Publié: (2021) -
Improved Oriented Object Detection in Remote Sensing Images Based on a Three-Point Regression Method
par: Falin Wu, et autres
Publié: (2021) -
Rotation-Invariant and Relation-Aware Cross-Domain Adaptation Object Detection Network for Optical Remote Sensing Images
par: Ying Chen, et autres
Publié: (2021)