Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection.

Bacteriophages, the viruses infecting bacteria, hold great potential for the treatment of multidrug-resistant bacterial infections and other applications due to their unparalleled diversity and recent breakthroughs in their genetic engineering. However, fundamental knowledge of the molecular mechani...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Enea Maffei, Aisylu Shaidullina, Marco Burkolter, Yannik Heyer, Fabienne Estermann, Valentin Druelle, Patrick Sauer, Luc Willi, Sarah Michaelis, Hubert Hilbi, David S Thaler, Alexander Harms
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
Acceso en línea:https://doaj.org/article/ea768564c5304e5ca3ca465bfc0f749a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ea768564c5304e5ca3ca465bfc0f749a
record_format dspace
spelling oai:doaj.org-article:ea768564c5304e5ca3ca465bfc0f749a2021-12-02T19:54:33ZSystematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection.1544-91731545-788510.1371/journal.pbio.3001424https://doaj.org/article/ea768564c5304e5ca3ca465bfc0f749a2021-11-01T00:00:00Zhttps://doi.org/10.1371/journal.pbio.3001424https://doaj.org/toc/1544-9173https://doaj.org/toc/1545-7885Bacteriophages, the viruses infecting bacteria, hold great potential for the treatment of multidrug-resistant bacterial infections and other applications due to their unparalleled diversity and recent breakthroughs in their genetic engineering. However, fundamental knowledge of the molecular mechanisms underlying phage-host interactions is mostly confined to a few traditional model systems and did not keep pace with the recent massive expansion of the field. The true potential of molecular biology encoded by these viruses has therefore remained largely untapped, and phages for therapy or other applications are often still selected empirically. We therefore sought to promote a systematic exploration of phage-host interactions by composing a well-assorted library of 68 newly isolated phages infecting the model organism Escherichia coli that we share with the community as the BASEL (BActeriophage SElection for your Laboratory) collection. This collection is largely representative of natural E. coli phage diversity and was intensively characterized phenotypically and genomically alongside 10 well-studied traditional model phages. We experimentally determined essential host receptors of all phages, quantified their sensitivity to 11 defense systems across different layers of bacterial immunity, and matched these results to the phages' host range across a panel of pathogenic enterobacterial strains. Clear patterns in the distribution of phage phenotypes and genomic features highlighted systematic differences in the potency of different immunity systems and suggested the molecular basis of receptor specificity in several phage groups. Our results also indicate strong trade-offs between fitness traits like broad host recognition and resistance to bacterial immunity that might drive the divergent adaptation of different phage groups to specific ecological niches. We envision that the BASEL collection will inspire future work exploring the biology of bacteriophages and their hosts by facilitating the discovery of underlying molecular mechanisms as the basis for an effective translation into biotechnology or therapeutic applications.Enea MaffeiAisylu ShaidullinaMarco BurkolterYannik HeyerFabienne EstermannValentin DruellePatrick SauerLuc WilliSarah MichaelisHubert HilbiDavid S ThalerAlexander HarmsPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Biology, Vol 19, Iss 11, p e3001424 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Enea Maffei
Aisylu Shaidullina
Marco Burkolter
Yannik Heyer
Fabienne Estermann
Valentin Druelle
Patrick Sauer
Luc Willi
Sarah Michaelis
Hubert Hilbi
David S Thaler
Alexander Harms
Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection.
description Bacteriophages, the viruses infecting bacteria, hold great potential for the treatment of multidrug-resistant bacterial infections and other applications due to their unparalleled diversity and recent breakthroughs in their genetic engineering. However, fundamental knowledge of the molecular mechanisms underlying phage-host interactions is mostly confined to a few traditional model systems and did not keep pace with the recent massive expansion of the field. The true potential of molecular biology encoded by these viruses has therefore remained largely untapped, and phages for therapy or other applications are often still selected empirically. We therefore sought to promote a systematic exploration of phage-host interactions by composing a well-assorted library of 68 newly isolated phages infecting the model organism Escherichia coli that we share with the community as the BASEL (BActeriophage SElection for your Laboratory) collection. This collection is largely representative of natural E. coli phage diversity and was intensively characterized phenotypically and genomically alongside 10 well-studied traditional model phages. We experimentally determined essential host receptors of all phages, quantified their sensitivity to 11 defense systems across different layers of bacterial immunity, and matched these results to the phages' host range across a panel of pathogenic enterobacterial strains. Clear patterns in the distribution of phage phenotypes and genomic features highlighted systematic differences in the potency of different immunity systems and suggested the molecular basis of receptor specificity in several phage groups. Our results also indicate strong trade-offs between fitness traits like broad host recognition and resistance to bacterial immunity that might drive the divergent adaptation of different phage groups to specific ecological niches. We envision that the BASEL collection will inspire future work exploring the biology of bacteriophages and their hosts by facilitating the discovery of underlying molecular mechanisms as the basis for an effective translation into biotechnology or therapeutic applications.
format article
author Enea Maffei
Aisylu Shaidullina
Marco Burkolter
Yannik Heyer
Fabienne Estermann
Valentin Druelle
Patrick Sauer
Luc Willi
Sarah Michaelis
Hubert Hilbi
David S Thaler
Alexander Harms
author_facet Enea Maffei
Aisylu Shaidullina
Marco Burkolter
Yannik Heyer
Fabienne Estermann
Valentin Druelle
Patrick Sauer
Luc Willi
Sarah Michaelis
Hubert Hilbi
David S Thaler
Alexander Harms
author_sort Enea Maffei
title Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection.
title_short Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection.
title_full Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection.
title_fullStr Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection.
title_full_unstemmed Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection.
title_sort systematic exploration of escherichia coli phage-host interactions with the basel phage collection.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/ea768564c5304e5ca3ca465bfc0f749a
work_keys_str_mv AT eneamaffei systematicexplorationofescherichiacoliphagehostinteractionswiththebaselphagecollection
AT aisylushaidullina systematicexplorationofescherichiacoliphagehostinteractionswiththebaselphagecollection
AT marcoburkolter systematicexplorationofescherichiacoliphagehostinteractionswiththebaselphagecollection
AT yannikheyer systematicexplorationofescherichiacoliphagehostinteractionswiththebaselphagecollection
AT fabienneestermann systematicexplorationofescherichiacoliphagehostinteractionswiththebaselphagecollection
AT valentindruelle systematicexplorationofescherichiacoliphagehostinteractionswiththebaselphagecollection
AT patricksauer systematicexplorationofescherichiacoliphagehostinteractionswiththebaselphagecollection
AT lucwilli systematicexplorationofescherichiacoliphagehostinteractionswiththebaselphagecollection
AT sarahmichaelis systematicexplorationofescherichiacoliphagehostinteractionswiththebaselphagecollection
AT huberthilbi systematicexplorationofescherichiacoliphagehostinteractionswiththebaselphagecollection
AT davidsthaler systematicexplorationofescherichiacoliphagehostinteractionswiththebaselphagecollection
AT alexanderharms systematicexplorationofescherichiacoliphagehostinteractionswiththebaselphagecollection
_version_ 1718375936384040960