Machine learning methods to predict amyloid positivity using domain scores from cognitive tests
Abstract Amyloid- $$\beta$$ β (A $$\beta$$ β ) is the target in many clinical trials for Alzheimer’s disease (AD). Preclinical AD patients are heterogeneous with regards to different backgrounds and diagnosis. Accurately predicting A $$\beta$$ β status of participants by using machine learning (ML)...
Guardado en:
Autores principales: | Guogen Shan, Charles Bernick, Jessica Z. K. Caldwell, Aaron Ritter |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ea894322e2e844929f1099088cdfa50c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach
por: Jun Pyo Kim, et al.
Publicado: (2021) -
Prediction of Amyloid Positivity in Mild Cognitive Impairment Using Fully Automated Brain Segmentation Software
por: Kang KM, et al.
Publicado: (2020) -
Plasma Amyloid-β Oligomerization Tendency Predicts Amyloid PET Positivity
por: Pyun JM, et al.
Publicado: (2021) -
Z Scores, Standard Scores, and Composite Test Scores Explained
por: Chittaranjan Andrade
Publicado: (2021) -
Validation of 2006 WHO prediction scores for true HIV infection in children less than 18 months with a positive serological HIV test.
por: Cécile Alexandra Peltier, et al.
Publicado: (2009)