Machine learning methods to predict amyloid positivity using domain scores from cognitive tests
Abstract Amyloid- $$\beta$$ β (A $$\beta$$ β ) is the target in many clinical trials for Alzheimer’s disease (AD). Preclinical AD patients are heterogeneous with regards to different backgrounds and diagnosis. Accurately predicting A $$\beta$$ β status of participants by using machine learning (ML)...
Enregistré dans:
Auteurs principaux: | Guogen Shan, Charles Bernick, Jessica Z. K. Caldwell, Aaron Ritter |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ea894322e2e844929f1099088cdfa50c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach
par: Jun Pyo Kim, et autres
Publié: (2021) -
Prediction of Amyloid Positivity in Mild Cognitive Impairment Using Fully Automated Brain Segmentation Software
par: Kang KM, et autres
Publié: (2020) -
Plasma Amyloid-β Oligomerization Tendency Predicts Amyloid PET Positivity
par: Pyun JM, et autres
Publié: (2021) -
Z Scores, Standard Scores, and Composite Test Scores Explained
par: Chittaranjan Andrade
Publié: (2021) -
Validation of 2006 WHO prediction scores for true HIV infection in children less than 18 months with a positive serological HIV test.
par: Cécile Alexandra Peltier, et autres
Publié: (2009)