Zebrafish behavior feature recognition using three-dimensional tracking and machine learning
Abstract In this work, we aim to construct a new behavior analysis method by using machine learning. We used two cameras to capture three-dimensional (3D) tracking data of zebrafish, which were analyzed using fuzzy adaptive resonance theory (FuzzyART), a type of machine learning algorithm, to identi...
Guardado en:
Autores principales: | Peng Yang, Hiro Takahashi, Masataka Murase, Motoyuki Itoh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ea991d4753e54cbc961e4218a969ae1d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Three-dimensional scoring of zebrafish behavior unveils biological phenomena hidden by two-dimensional analyses
por: Simone Macrì, et al.
Publicado: (2017) -
Recognition of Psychological Characteristics of Students’ Behavior Based on Improved Machine Learning
por: Mingchao Li
Publicado: (2021) -
Enhancing the pattern recognition capacity of machine learning techniques: The importance of feature positioning
por: Debora Di Caprio, et al.
Publicado: (2022) -
Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning
por: Jonghee Yoon, et al.
Publicado: (2017) -
Ulixes: Facial Recognition Privacy with Adversarial Machine Learning
por: Cilloni Thomas, et al.
Publicado: (2022)