Study review of the CALORRE differential calorimeter: definition of designs for different nuclear environments
This paper deals with the CALORRE differential calorimeter patented by Aix-Marseille University and the CEA in 2015. Firstly, the paper focuses on the presentation of the first prototype of CALORRE calorimeter qualified under real conditions during the MARIA irradiation campaign in 2015. Then, a rev...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
EDP Sciences
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ea9e3665fde546d394f89e8a081cbff1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | This paper deals with the CALORRE differential calorimeter patented by Aix-Marseille University and the CEA in 2015. Firstly, the paper focuses on the presentation of the first prototype of CALORRE calorimeter qualified under real conditions during the MARIA irradiation campaign in 2015. Then, a review of the studies restricted to one CALORRE calorimetric cell realized thanks to experimental characterizations under laboratory conditions is detailed. Several configurations were studied to determine the influence of the cell height, its horizontal fin geometry and the nature of the material of its structure on its response for a calibration protocol: linearity, sensitivity, range, reproducibility, response time and absolute temperatures. Finally, within the framework of the new CALORI project, an optimization of the calorimeter assembly and its design were carried out in order to remove contact thermal resistances and provide a new configuration of CALORRE calorimeter suited for the in-core water loop of the MIT reactor (2 W.g-1). The response of this new calorimeter is estimated thanks to thermal simulations. |
---|