Development of childhood asthma prediction models using machine learning approaches
Abstract Background Respiratory symptoms are common in early life and often transient. It is difficult to identify in which children these will persist and result in asthma. Machine learning (ML) approaches have the potential for better predictive performance and generalisability over existing child...
Guardado en:
Autores principales: | Dilini M. Kothalawala, Clare S. Murray, Angela Simpson, Adnan Custovic, William J. Tapper, S. Hasan Arshad, John W. Holloway, Faisal I. Rezwan, STELAR/UNICORN investigators |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eaa4da07fb3e4441aacd4bf9bf76eee0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Altered Pattern of Macrophage Polarization as a Biomarker for Severity of Childhood Asthma
por: Kuo CH, et al.
Publicado: (2021) -
Childhood Asthma – The Effect of Asthma Specialist Intervention on Asthma Control: A Retrospective Review
por: Rosman Y, et al.
Publicado: (2021) -
Smarte Kindheiten
por: Dana Ghafoor-Zadeh, et al.
Publicado: (2021) -
Development and equivalence of new faces for inclusion in the Childhood Asthma Control Test (C-ACT) response scale
por: Kate Sully, et al.
Publicado: (2021) -
The Journal of asthma
Publicado: (1981)