Deep Reinforcement Learning for Autonomous Water Heater Control
Electric water heaters represent 14% of the electricity consumption in residential buildings. An average household in the United States (U.S.) spends about USD 400–600 (0.45 ¢/L–0.68 ¢/L) on water heating every year. In this context, water heaters are often considered as a valuable asset for Demand...
Guardado en:
Autores principales: | Kadir Amasyali, Jeffrey Munk, Kuldeep Kurte, Teja Kuruganti, Helia Zandi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eaa8972ca3004a5e8db38130c5d468d7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Cost-Optimized Microgrid Coalitions Using Bayesian Reinforcement Learning
por: Mohammad Sadeghi, et al.
Publicado: (2021) -
Performance evaluation of a plate type condenser for heat pump water heater
por: Hitoshi ASANO, et al.
Publicado: (2014) -
Reinforcement Learning Approaches to Optimal Market Making
por: Bruno Gašperov, et al.
Publicado: (2021) -
A Smart Strategy for Sizing of Hybrid Renewable Energy System to Supply Remote Loads in Saudi Arabia
por: Majed A. Alotaibi, et al.
Publicado: (2021) -
Quadrotor Autonomous Navigation in Semi-Known Environments Based on Deep Reinforcement Learning
por: Jiajun Ou, et al.
Publicado: (2021)