An oversampling method for multi-class imbalanced data based on composite weights
To solve the oversampling problem of multi-class small samples and to improve their classification accuracy, we develop an oversampling method based on classification ranking and weight setting. The designed oversampling algorithm sorts the data within each class of dataset according to the distance...
Guardado en:
Autores principales: | Mingyang Deng, Yingshi Guo, Chang Wang, Fuwei Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eaaaafb40d534f909aaa7d20b8c277fc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An oversampling method for multi-class imbalanced data based on composite weights.
por: Mingyang Deng, et al.
Publicado: (2021) -
Oversampling Imbalanced Data Based on Convergent WGAN for Network Threat Detection
por: Yanping Xu, et al.
Publicado: (2021) -
A Novel Oversampling Method for Imbalanced Datasets Based on Density Peaks Clustering
por: Jie Cao*, et al.
Publicado: (2021) -
Assembly Quality Detection Based on Class-Imbalanced Semi-Supervised Learning
por: Zichen Lu, et al.
Publicado: (2021) -
A Learning Objective Controllable Sphere-Based Method for Balanced and Imbalanced Data Classification
por: Yeontark Park, et al.
Publicado: (2021)