An oversampling method for multi-class imbalanced data based on composite weights
To solve the oversampling problem of multi-class small samples and to improve their classification accuracy, we develop an oversampling method based on classification ranking and weight setting. The designed oversampling algorithm sorts the data within each class of dataset according to the distance...
Enregistré dans:
Auteurs principaux: | Mingyang Deng, Yingshi Guo, Chang Wang, Fuwei Wu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/eaaaafb40d534f909aaa7d20b8c277fc |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
An oversampling method for multi-class imbalanced data based on composite weights.
par: Mingyang Deng, et autres
Publié: (2021) -
Oversampling Imbalanced Data Based on Convergent WGAN for Network Threat Detection
par: Yanping Xu, et autres
Publié: (2021) -
A Novel Oversampling Method for Imbalanced Datasets Based on Density Peaks Clustering
par: Jie Cao*, et autres
Publié: (2021) -
Assembly Quality Detection Based on Class-Imbalanced Semi-Supervised Learning
par: Zichen Lu, et autres
Publié: (2021) -
A Learning Objective Controllable Sphere-Based Method for Balanced and Imbalanced Data Classification
par: Yeontark Park, et autres
Publié: (2021)