Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer
Recent omics analyses of human biofluids provide opportunities to probe selected species of biomolecules for disease diagnostics. Fourier-transform infrared (FTIR) spectroscopy investigates the full repertoire of molecular species within a sample at once. Here, we present a multi-institutional study...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
eLife Sciences Publications Ltd
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eaad08e071b84de89e14ee30b1aa50b7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:eaad08e071b84de89e14ee30b1aa50b7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:eaad08e071b84de89e14ee30b1aa50b72021-11-25T12:33:48ZInfrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer10.7554/eLife.687582050-084Xe68758https://doaj.org/article/eaad08e071b84de89e14ee30b1aa50b72021-10-01T00:00:00Zhttps://elifesciences.org/articles/68758https://doaj.org/toc/2050-084XRecent omics analyses of human biofluids provide opportunities to probe selected species of biomolecules for disease diagnostics. Fourier-transform infrared (FTIR) spectroscopy investigates the full repertoire of molecular species within a sample at once. Here, we present a multi-institutional study in which we analysed infrared fingerprints of plasma and serum samples from 1639 individuals with different solid tumours and carefully matched symptomatic and non-symptomatic reference individuals. Focusing on breast, bladder, prostate, and lung cancer, we find that infrared molecular fingerprinting is capable of detecting cancer: training a support vector machine algorithm allowed us to obtain binary classification performance in the range of 0.78–0.89 (area under the receiver operating characteristic curve [AUC]), with a clear correlation between AUC and tumour load. Intriguingly, we find that the spectral signatures differ between different cancer types. This study lays the foundation for high-throughput onco-IR-phenotyping of four common cancers, providing a cost-effective, complementary analytical tool for disease recognition.Marinus HuberKosmas V KepesidisLiudmila VoroninaFrank FleischmannErnst FillJacqueline HermannIna KochKatrin Milger-KneidingerThomas KolbenGerald B SchulzFriedrich JokischJürgen BehrNadia HarbeckMaximilian ReiserChristian StiefFerenc KrauszMihaela ZigmaneLife Sciences Publications Ltdarticleinfrared spectroscopyliquid biopsycancer detectionphenotypingMedicineRScienceQBiology (General)QH301-705.5ENeLife, Vol 10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
infrared spectroscopy liquid biopsy cancer detection phenotyping Medicine R Science Q Biology (General) QH301-705.5 |
spellingShingle |
infrared spectroscopy liquid biopsy cancer detection phenotyping Medicine R Science Q Biology (General) QH301-705.5 Marinus Huber Kosmas V Kepesidis Liudmila Voronina Frank Fleischmann Ernst Fill Jacqueline Hermann Ina Koch Katrin Milger-Kneidinger Thomas Kolben Gerald B Schulz Friedrich Jokisch Jürgen Behr Nadia Harbeck Maximilian Reiser Christian Stief Ferenc Krausz Mihaela Zigman Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer |
description |
Recent omics analyses of human biofluids provide opportunities to probe selected species of biomolecules for disease diagnostics. Fourier-transform infrared (FTIR) spectroscopy investigates the full repertoire of molecular species within a sample at once. Here, we present a multi-institutional study in which we analysed infrared fingerprints of plasma and serum samples from 1639 individuals with different solid tumours and carefully matched symptomatic and non-symptomatic reference individuals. Focusing on breast, bladder, prostate, and lung cancer, we find that infrared molecular fingerprinting is capable of detecting cancer: training a support vector machine algorithm allowed us to obtain binary classification performance in the range of 0.78–0.89 (area under the receiver operating characteristic curve [AUC]), with a clear correlation between AUC and tumour load. Intriguingly, we find that the spectral signatures differ between different cancer types. This study lays the foundation for high-throughput onco-IR-phenotyping of four common cancers, providing a cost-effective, complementary analytical tool for disease recognition. |
format |
article |
author |
Marinus Huber Kosmas V Kepesidis Liudmila Voronina Frank Fleischmann Ernst Fill Jacqueline Hermann Ina Koch Katrin Milger-Kneidinger Thomas Kolben Gerald B Schulz Friedrich Jokisch Jürgen Behr Nadia Harbeck Maximilian Reiser Christian Stief Ferenc Krausz Mihaela Zigman |
author_facet |
Marinus Huber Kosmas V Kepesidis Liudmila Voronina Frank Fleischmann Ernst Fill Jacqueline Hermann Ina Koch Katrin Milger-Kneidinger Thomas Kolben Gerald B Schulz Friedrich Jokisch Jürgen Behr Nadia Harbeck Maximilian Reiser Christian Stief Ferenc Krausz Mihaela Zigman |
author_sort |
Marinus Huber |
title |
Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer |
title_short |
Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer |
title_full |
Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer |
title_fullStr |
Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer |
title_full_unstemmed |
Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer |
title_sort |
infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer |
publisher |
eLife Sciences Publications Ltd |
publishDate |
2021 |
url |
https://doaj.org/article/eaad08e071b84de89e14ee30b1aa50b7 |
work_keys_str_mv |
AT marinushuber infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer AT kosmasvkepesidis infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer AT liudmilavoronina infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer AT frankfleischmann infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer AT ernstfill infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer AT jacquelinehermann infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer AT inakoch infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer AT katrinmilgerkneidinger infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer AT thomaskolben infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer AT geraldbschulz infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer AT friedrichjokisch infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer AT jurgenbehr infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer AT nadiaharbeck infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer AT maximilianreiser infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer AT christianstief infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer AT ferenckrausz infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer AT mihaelazigman infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer |
_version_ |
1718413532592078848 |