Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer

Recent omics analyses of human biofluids provide opportunities to probe selected species of biomolecules for disease diagnostics. Fourier-transform infrared (FTIR) spectroscopy investigates the full repertoire of molecular species within a sample at once. Here, we present a multi-institutional study...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Marinus Huber, Kosmas V Kepesidis, Liudmila Voronina, Frank Fleischmann, Ernst Fill, Jacqueline Hermann, Ina Koch, Katrin Milger-Kneidinger, Thomas Kolben, Gerald B Schulz, Friedrich Jokisch, Jürgen Behr, Nadia Harbeck, Maximilian Reiser, Christian Stief, Ferenc Krausz, Mihaela Zigman
Formato: article
Lenguaje:EN
Publicado: eLife Sciences Publications Ltd 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/eaad08e071b84de89e14ee30b1aa50b7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:eaad08e071b84de89e14ee30b1aa50b7
record_format dspace
spelling oai:doaj.org-article:eaad08e071b84de89e14ee30b1aa50b72021-11-25T12:33:48ZInfrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer10.7554/eLife.687582050-084Xe68758https://doaj.org/article/eaad08e071b84de89e14ee30b1aa50b72021-10-01T00:00:00Zhttps://elifesciences.org/articles/68758https://doaj.org/toc/2050-084XRecent omics analyses of human biofluids provide opportunities to probe selected species of biomolecules for disease diagnostics. Fourier-transform infrared (FTIR) spectroscopy investigates the full repertoire of molecular species within a sample at once. Here, we present a multi-institutional study in which we analysed infrared fingerprints of plasma and serum samples from 1639 individuals with different solid tumours and carefully matched symptomatic and non-symptomatic reference individuals. Focusing on breast, bladder, prostate, and lung cancer, we find that infrared molecular fingerprinting is capable of detecting cancer: training a support vector machine algorithm allowed us to obtain binary classification performance in the range of 0.78–0.89 (area under the receiver operating characteristic curve [AUC]), with a clear correlation between AUC and tumour load. Intriguingly, we find that the spectral signatures differ between different cancer types. This study lays the foundation for high-throughput onco-IR-phenotyping of four common cancers, providing a cost-effective, complementary analytical tool for disease recognition.Marinus HuberKosmas V KepesidisLiudmila VoroninaFrank FleischmannErnst FillJacqueline HermannIna KochKatrin Milger-KneidingerThomas KolbenGerald B SchulzFriedrich JokischJürgen BehrNadia HarbeckMaximilian ReiserChristian StiefFerenc KrauszMihaela ZigmaneLife Sciences Publications Ltdarticleinfrared spectroscopyliquid biopsycancer detectionphenotypingMedicineRScienceQBiology (General)QH301-705.5ENeLife, Vol 10 (2021)
institution DOAJ
collection DOAJ
language EN
topic infrared spectroscopy
liquid biopsy
cancer detection
phenotyping
Medicine
R
Science
Q
Biology (General)
QH301-705.5
spellingShingle infrared spectroscopy
liquid biopsy
cancer detection
phenotyping
Medicine
R
Science
Q
Biology (General)
QH301-705.5
Marinus Huber
Kosmas V Kepesidis
Liudmila Voronina
Frank Fleischmann
Ernst Fill
Jacqueline Hermann
Ina Koch
Katrin Milger-Kneidinger
Thomas Kolben
Gerald B Schulz
Friedrich Jokisch
Jürgen Behr
Nadia Harbeck
Maximilian Reiser
Christian Stief
Ferenc Krausz
Mihaela Zigman
Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer
description Recent omics analyses of human biofluids provide opportunities to probe selected species of biomolecules for disease diagnostics. Fourier-transform infrared (FTIR) spectroscopy investigates the full repertoire of molecular species within a sample at once. Here, we present a multi-institutional study in which we analysed infrared fingerprints of plasma and serum samples from 1639 individuals with different solid tumours and carefully matched symptomatic and non-symptomatic reference individuals. Focusing on breast, bladder, prostate, and lung cancer, we find that infrared molecular fingerprinting is capable of detecting cancer: training a support vector machine algorithm allowed us to obtain binary classification performance in the range of 0.78–0.89 (area under the receiver operating characteristic curve [AUC]), with a clear correlation between AUC and tumour load. Intriguingly, we find that the spectral signatures differ between different cancer types. This study lays the foundation for high-throughput onco-IR-phenotyping of four common cancers, providing a cost-effective, complementary analytical tool for disease recognition.
format article
author Marinus Huber
Kosmas V Kepesidis
Liudmila Voronina
Frank Fleischmann
Ernst Fill
Jacqueline Hermann
Ina Koch
Katrin Milger-Kneidinger
Thomas Kolben
Gerald B Schulz
Friedrich Jokisch
Jürgen Behr
Nadia Harbeck
Maximilian Reiser
Christian Stief
Ferenc Krausz
Mihaela Zigman
author_facet Marinus Huber
Kosmas V Kepesidis
Liudmila Voronina
Frank Fleischmann
Ernst Fill
Jacqueline Hermann
Ina Koch
Katrin Milger-Kneidinger
Thomas Kolben
Gerald B Schulz
Friedrich Jokisch
Jürgen Behr
Nadia Harbeck
Maximilian Reiser
Christian Stief
Ferenc Krausz
Mihaela Zigman
author_sort Marinus Huber
title Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer
title_short Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer
title_full Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer
title_fullStr Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer
title_full_unstemmed Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer
title_sort infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer
publisher eLife Sciences Publications Ltd
publishDate 2021
url https://doaj.org/article/eaad08e071b84de89e14ee30b1aa50b7
work_keys_str_mv AT marinushuber infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT kosmasvkepesidis infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT liudmilavoronina infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT frankfleischmann infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT ernstfill infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT jacquelinehermann infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT inakoch infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT katrinmilgerkneidinger infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT thomaskolben infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT geraldbschulz infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT friedrichjokisch infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT jurgenbehr infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT nadiaharbeck infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT maximilianreiser infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT christianstief infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT ferenckrausz infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
AT mihaelazigman infraredmolecularfingerprintingofbloodbasedliquidbiopsiesforthedetectionofcancer
_version_ 1718413532592078848