Integrated analysis of behavioral, epigenetic, and gut microbiome analyses in App NL-G-F , App NL-F , and wild type mice
Abstract Epigenetic mechanisms occurring in the brain as well as alterations in the gut microbiome composition might contribute to Alzheimer’s disease (AD). Human amyloid precursor protein knock-in (KI) mice contain the Swedish and Iberian mutations (App NL-F ) or those two and also the Arctic mutat...
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eabb5988f5e94c96a3c3a0cc1f5de7bc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:eabb5988f5e94c96a3c3a0cc1f5de7bc |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:eabb5988f5e94c96a3c3a0cc1f5de7bc2021-12-02T13:20:22ZIntegrated analysis of behavioral, epigenetic, and gut microbiome analyses in App NL-G-F , App NL-F , and wild type mice10.1038/s41598-021-83851-42045-2322https://doaj.org/article/eabb5988f5e94c96a3c3a0cc1f5de7bc2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-83851-4https://doaj.org/toc/2045-2322Abstract Epigenetic mechanisms occurring in the brain as well as alterations in the gut microbiome composition might contribute to Alzheimer’s disease (AD). Human amyloid precursor protein knock-in (KI) mice contain the Swedish and Iberian mutations (App NL-F ) or those two and also the Arctic mutation (App NL-G-F ). In this study, we assessed whether behavioral and cognitive performance in 6-month-old App NL-F , App NL-G-F , and C57BL/6J wild-type (WT) mice was associated with the gut microbiome, and whether the genotype modulates this association. The genotype effects observed in behavioral tests were test-dependent. The biodiversity and composition of the gut microbiome linked to various aspects of mouse behavioral and cognitive performance but differences in genotype modulated these relationships. These genotype-dependent associations include members of the Lachnospiraceae and Ruminococcaceae families. In a subset of female mice, we assessed DNA methylation in the hippocampus and investigated whether alterations in hippocampal DNA methylation were associated with the gut microbiome. Among other differentially methylated regions, we identified a 1 Kb region that overlapped ing 3′UTR of the Tomm40 gene and the promoter region of the Apoe gene that and was significantly more methylated in the hippocampus of App NL-G-F than WT mice. The integrated gut microbiome hippocampal DNA methylation analysis revealed a positive relationship between amplicon sequence variants (ASVs) within the Lachnospiraceae family and methylation at the Apoe gene. Hence, these microbes may elicit an impact on AD-relevant behavioral and cognitive performance via epigenetic changes in AD-susceptibility genes in neural tissue or that such changes in the epigenome can elicit alterations in intestinal physiology that affect the growth of these taxa in the gut microbiome.Payel KunduEileen Ruth S. TorresKeaton StagamanKristin KasschauMariam OkhovatSarah HoldenSamantha WardKimberly A. NevonenBrett A. DavisTakashi SaitoTakaomi C. SaidoLucia CarboneThomas J. SharptonJacob RaberNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-20 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Payel Kundu Eileen Ruth S. Torres Keaton Stagaman Kristin Kasschau Mariam Okhovat Sarah Holden Samantha Ward Kimberly A. Nevonen Brett A. Davis Takashi Saito Takaomi C. Saido Lucia Carbone Thomas J. Sharpton Jacob Raber Integrated analysis of behavioral, epigenetic, and gut microbiome analyses in App NL-G-F , App NL-F , and wild type mice |
description |
Abstract Epigenetic mechanisms occurring in the brain as well as alterations in the gut microbiome composition might contribute to Alzheimer’s disease (AD). Human amyloid precursor protein knock-in (KI) mice contain the Swedish and Iberian mutations (App NL-F ) or those two and also the Arctic mutation (App NL-G-F ). In this study, we assessed whether behavioral and cognitive performance in 6-month-old App NL-F , App NL-G-F , and C57BL/6J wild-type (WT) mice was associated with the gut microbiome, and whether the genotype modulates this association. The genotype effects observed in behavioral tests were test-dependent. The biodiversity and composition of the gut microbiome linked to various aspects of mouse behavioral and cognitive performance but differences in genotype modulated these relationships. These genotype-dependent associations include members of the Lachnospiraceae and Ruminococcaceae families. In a subset of female mice, we assessed DNA methylation in the hippocampus and investigated whether alterations in hippocampal DNA methylation were associated with the gut microbiome. Among other differentially methylated regions, we identified a 1 Kb region that overlapped ing 3′UTR of the Tomm40 gene and the promoter region of the Apoe gene that and was significantly more methylated in the hippocampus of App NL-G-F than WT mice. The integrated gut microbiome hippocampal DNA methylation analysis revealed a positive relationship between amplicon sequence variants (ASVs) within the Lachnospiraceae family and methylation at the Apoe gene. Hence, these microbes may elicit an impact on AD-relevant behavioral and cognitive performance via epigenetic changes in AD-susceptibility genes in neural tissue or that such changes in the epigenome can elicit alterations in intestinal physiology that affect the growth of these taxa in the gut microbiome. |
format |
article |
author |
Payel Kundu Eileen Ruth S. Torres Keaton Stagaman Kristin Kasschau Mariam Okhovat Sarah Holden Samantha Ward Kimberly A. Nevonen Brett A. Davis Takashi Saito Takaomi C. Saido Lucia Carbone Thomas J. Sharpton Jacob Raber |
author_facet |
Payel Kundu Eileen Ruth S. Torres Keaton Stagaman Kristin Kasschau Mariam Okhovat Sarah Holden Samantha Ward Kimberly A. Nevonen Brett A. Davis Takashi Saito Takaomi C. Saido Lucia Carbone Thomas J. Sharpton Jacob Raber |
author_sort |
Payel Kundu |
title |
Integrated analysis of behavioral, epigenetic, and gut microbiome analyses in App NL-G-F , App NL-F , and wild type mice |
title_short |
Integrated analysis of behavioral, epigenetic, and gut microbiome analyses in App NL-G-F , App NL-F , and wild type mice |
title_full |
Integrated analysis of behavioral, epigenetic, and gut microbiome analyses in App NL-G-F , App NL-F , and wild type mice |
title_fullStr |
Integrated analysis of behavioral, epigenetic, and gut microbiome analyses in App NL-G-F , App NL-F , and wild type mice |
title_full_unstemmed |
Integrated analysis of behavioral, epigenetic, and gut microbiome analyses in App NL-G-F , App NL-F , and wild type mice |
title_sort |
integrated analysis of behavioral, epigenetic, and gut microbiome analyses in app nl-g-f , app nl-f , and wild type mice |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/eabb5988f5e94c96a3c3a0cc1f5de7bc |
work_keys_str_mv |
AT payelkundu integratedanalysisofbehavioralepigeneticandgutmicrobiomeanalysesinappnlgfappnlfandwildtypemice AT eileenruthstorres integratedanalysisofbehavioralepigeneticandgutmicrobiomeanalysesinappnlgfappnlfandwildtypemice AT keatonstagaman integratedanalysisofbehavioralepigeneticandgutmicrobiomeanalysesinappnlgfappnlfandwildtypemice AT kristinkasschau integratedanalysisofbehavioralepigeneticandgutmicrobiomeanalysesinappnlgfappnlfandwildtypemice AT mariamokhovat integratedanalysisofbehavioralepigeneticandgutmicrobiomeanalysesinappnlgfappnlfandwildtypemice AT sarahholden integratedanalysisofbehavioralepigeneticandgutmicrobiomeanalysesinappnlgfappnlfandwildtypemice AT samanthaward integratedanalysisofbehavioralepigeneticandgutmicrobiomeanalysesinappnlgfappnlfandwildtypemice AT kimberlyanevonen integratedanalysisofbehavioralepigeneticandgutmicrobiomeanalysesinappnlgfappnlfandwildtypemice AT brettadavis integratedanalysisofbehavioralepigeneticandgutmicrobiomeanalysesinappnlgfappnlfandwildtypemice AT takashisaito integratedanalysisofbehavioralepigeneticandgutmicrobiomeanalysesinappnlgfappnlfandwildtypemice AT takaomicsaido integratedanalysisofbehavioralepigeneticandgutmicrobiomeanalysesinappnlgfappnlfandwildtypemice AT luciacarbone integratedanalysisofbehavioralepigeneticandgutmicrobiomeanalysesinappnlgfappnlfandwildtypemice AT thomasjsharpton integratedanalysisofbehavioralepigeneticandgutmicrobiomeanalysesinappnlgfappnlfandwildtypemice AT jacobraber integratedanalysisofbehavioralepigeneticandgutmicrobiomeanalysesinappnlgfappnlfandwildtypemice |
_version_ |
1718393246012407808 |