Heatstroke predictions by machine learning, weather information, and an all-population registry for 12-hour heatstroke alerts
In the context of climate change, heatstroke is expected to become an increasingly relevant public health concern. Here, the authors develop and validate prediction models for the number of all heatstroke cases in different cities in Japan.
Guardado en:
Autores principales: | Soshiro Ogata, Misa Takegami, Taira Ozaki, Takahiro Nakashima, Daisuke Onozuka, Shunsuke Murata, Yuriko Nakaoku, Koyu Suzuki, Akihito Hagihara, Teruo Noguchi, Koji Iihara, Keiichi Kitazume, Tohru Morioka, Shin Yamazaki, Takahiro Yoshida, Yoshiki Yamagata, Kunihiro Nishimura |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eabce182db884c9da55d3f0e13addb3e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Pathophysiology and pathological findings of heatstroke in dogs
por: Romanucci M, et al.
Publicado: (2013) -
Heat health risk assessment analysing heatstroke patients in Fukuoka City, Japan.
por: Nishat Tasnim Toosty, et al.
Publicado: (2021) -
Modulation of microglial phenotypes by dexmedetomidine through TREM2 reduces neuroinflammation in heatstroke
por: Ping Li, et al.
Publicado: (2021) -
Author Correction: Modulation of microglial phenotypes by dexmedetomidine through TREM2 reduces neuroinflammation in heatstroke
por: Ping Li, et al.
Publicado: (2021) -
Association Between Platelet Levels on Admission and 90-day Mortality in Patients With Exertional Heatstroke, a 10 Years Cohort Study
por: Li Zhong, et al.
Publicado: (2021)