Heatstroke predictions by machine learning, weather information, and an all-population registry for 12-hour heatstroke alerts
In the context of climate change, heatstroke is expected to become an increasingly relevant public health concern. Here, the authors develop and validate prediction models for the number of all heatstroke cases in different cities in Japan.
Enregistré dans:
Auteurs principaux: | Soshiro Ogata, Misa Takegami, Taira Ozaki, Takahiro Nakashima, Daisuke Onozuka, Shunsuke Murata, Yuriko Nakaoku, Koyu Suzuki, Akihito Hagihara, Teruo Noguchi, Koji Iihara, Keiichi Kitazume, Tohru Morioka, Shin Yamazaki, Takahiro Yoshida, Yoshiki Yamagata, Kunihiro Nishimura |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/eabce182db884c9da55d3f0e13addb3e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Pathophysiology and pathological findings of heatstroke in dogs
par: Romanucci M, et autres
Publié: (2013) -
Heat health risk assessment analysing heatstroke patients in Fukuoka City, Japan.
par: Nishat Tasnim Toosty, et autres
Publié: (2021) -
Modulation of microglial phenotypes by dexmedetomidine through TREM2 reduces neuroinflammation in heatstroke
par: Ping Li, et autres
Publié: (2021) -
Author Correction: Modulation of microglial phenotypes by dexmedetomidine through TREM2 reduces neuroinflammation in heatstroke
par: Ping Li, et autres
Publié: (2021) -
Association Between Platelet Levels on Admission and 90-day Mortality in Patients With Exertional Heatstroke, a 10 Years Cohort Study
par: Li Zhong, et autres
Publié: (2021)