Mechanical behavior predictions of additively manufactured microstructures using functional Gaussian process surrogates
Abstract Relational linkages connecting process, structure, and properties are some of the most sought after goals in additive manufacturing (AM). This is desired especially because the microstructural grain morphologies of AM components can be vastly different than their conventionally manufactured...
Enregistré dans:
Auteurs principaux: | Robert Saunders, Celia Butler, John Michopoulos, Dimitris Lagoudas, Alaa Elwany, Amit Bagchi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/eac4f2eb60f14a5ca1062d3782fce863 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Accelerating phase-field-based microstructure evolution predictions via surrogate models trained by machine learning methods
par: David Montes de Oca Zapiain, et autres
Publié: (2021) -
Mechanistic data-driven prediction of as-built mechanical properties in metal additive manufacturing
par: Xiaoyu Xie, et autres
Publié: (2021) -
Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening
par: Min Yang, et autres
Publié: (2021) -
Bayesian optimization with adaptive surrogate models for automated experimental design
par: Bowen Lei, et autres
Publié: (2021) -
Uncertainty quantification and composition optimization for alloy additive manufacturing through a CALPHAD-based ICME framework
par: Xin Wang, et autres
Publié: (2020)