Inference and analysis of cell-cell communication using CellChat
Single-cell methods record molecule expressions of cells in a given tissue, but understanding interactions between cells remains challenging. Here the authors show by applying systems biology and machine learning approaches that they can infer and analyze cell-cell communication networks in an easil...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eac776c8aeed43009b282c2dd2c6db3b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:eac776c8aeed43009b282c2dd2c6db3b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:eac776c8aeed43009b282c2dd2c6db3b2021-12-02T14:21:27ZInference and analysis of cell-cell communication using CellChat10.1038/s41467-021-21246-92041-1723https://doaj.org/article/eac776c8aeed43009b282c2dd2c6db3b2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21246-9https://doaj.org/toc/2041-1723Single-cell methods record molecule expressions of cells in a given tissue, but understanding interactions between cells remains challenging. Here the authors show by applying systems biology and machine learning approaches that they can infer and analyze cell-cell communication networks in an easily interpretable way.Suoqin JinChristian F. Guerrero-JuarezLihua ZhangIvan ChangRaul RamosChen-Hsiang KuanPeggy MyungMaksim V. PlikusQing NieNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-20 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Suoqin Jin Christian F. Guerrero-Juarez Lihua Zhang Ivan Chang Raul Ramos Chen-Hsiang Kuan Peggy Myung Maksim V. Plikus Qing Nie Inference and analysis of cell-cell communication using CellChat |
description |
Single-cell methods record molecule expressions of cells in a given tissue, but understanding interactions between cells remains challenging. Here the authors show by applying systems biology and machine learning approaches that they can infer and analyze cell-cell communication networks in an easily interpretable way. |
format |
article |
author |
Suoqin Jin Christian F. Guerrero-Juarez Lihua Zhang Ivan Chang Raul Ramos Chen-Hsiang Kuan Peggy Myung Maksim V. Plikus Qing Nie |
author_facet |
Suoqin Jin Christian F. Guerrero-Juarez Lihua Zhang Ivan Chang Raul Ramos Chen-Hsiang Kuan Peggy Myung Maksim V. Plikus Qing Nie |
author_sort |
Suoqin Jin |
title |
Inference and analysis of cell-cell communication using CellChat |
title_short |
Inference and analysis of cell-cell communication using CellChat |
title_full |
Inference and analysis of cell-cell communication using CellChat |
title_fullStr |
Inference and analysis of cell-cell communication using CellChat |
title_full_unstemmed |
Inference and analysis of cell-cell communication using CellChat |
title_sort |
inference and analysis of cell-cell communication using cellchat |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/eac776c8aeed43009b282c2dd2c6db3b |
work_keys_str_mv |
AT suoqinjin inferenceandanalysisofcellcellcommunicationusingcellchat AT christianfguerrerojuarez inferenceandanalysisofcellcellcommunicationusingcellchat AT lihuazhang inferenceandanalysisofcellcellcommunicationusingcellchat AT ivanchang inferenceandanalysisofcellcellcommunicationusingcellchat AT raulramos inferenceandanalysisofcellcellcommunicationusingcellchat AT chenhsiangkuan inferenceandanalysisofcellcellcommunicationusingcellchat AT peggymyung inferenceandanalysisofcellcellcommunicationusingcellchat AT maksimvplikus inferenceandanalysisofcellcellcommunicationusingcellchat AT qingnie inferenceandanalysisofcellcellcommunicationusingcellchat |
_version_ |
1718391580662956032 |