Inference and analysis of cell-cell communication using CellChat

Single-cell methods record molecule expressions of cells in a given tissue, but understanding interactions between cells remains challenging. Here the authors show by applying systems biology and machine learning approaches that they can infer and analyze cell-cell communication networks in an easil...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Suoqin Jin, Christian F. Guerrero-Juarez, Lihua Zhang, Ivan Chang, Raul Ramos, Chen-Hsiang Kuan, Peggy Myung, Maksim V. Plikus, Qing Nie
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/eac776c8aeed43009b282c2dd2c6db3b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:eac776c8aeed43009b282c2dd2c6db3b
record_format dspace
spelling oai:doaj.org-article:eac776c8aeed43009b282c2dd2c6db3b2021-12-02T14:21:27ZInference and analysis of cell-cell communication using CellChat10.1038/s41467-021-21246-92041-1723https://doaj.org/article/eac776c8aeed43009b282c2dd2c6db3b2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21246-9https://doaj.org/toc/2041-1723Single-cell methods record molecule expressions of cells in a given tissue, but understanding interactions between cells remains challenging. Here the authors show by applying systems biology and machine learning approaches that they can infer and analyze cell-cell communication networks in an easily interpretable way.Suoqin JinChristian F. Guerrero-JuarezLihua ZhangIvan ChangRaul RamosChen-Hsiang KuanPeggy MyungMaksim V. PlikusQing NieNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-20 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Suoqin Jin
Christian F. Guerrero-Juarez
Lihua Zhang
Ivan Chang
Raul Ramos
Chen-Hsiang Kuan
Peggy Myung
Maksim V. Plikus
Qing Nie
Inference and analysis of cell-cell communication using CellChat
description Single-cell methods record molecule expressions of cells in a given tissue, but understanding interactions between cells remains challenging. Here the authors show by applying systems biology and machine learning approaches that they can infer and analyze cell-cell communication networks in an easily interpretable way.
format article
author Suoqin Jin
Christian F. Guerrero-Juarez
Lihua Zhang
Ivan Chang
Raul Ramos
Chen-Hsiang Kuan
Peggy Myung
Maksim V. Plikus
Qing Nie
author_facet Suoqin Jin
Christian F. Guerrero-Juarez
Lihua Zhang
Ivan Chang
Raul Ramos
Chen-Hsiang Kuan
Peggy Myung
Maksim V. Plikus
Qing Nie
author_sort Suoqin Jin
title Inference and analysis of cell-cell communication using CellChat
title_short Inference and analysis of cell-cell communication using CellChat
title_full Inference and analysis of cell-cell communication using CellChat
title_fullStr Inference and analysis of cell-cell communication using CellChat
title_full_unstemmed Inference and analysis of cell-cell communication using CellChat
title_sort inference and analysis of cell-cell communication using cellchat
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/eac776c8aeed43009b282c2dd2c6db3b
work_keys_str_mv AT suoqinjin inferenceandanalysisofcellcellcommunicationusingcellchat
AT christianfguerrerojuarez inferenceandanalysisofcellcellcommunicationusingcellchat
AT lihuazhang inferenceandanalysisofcellcellcommunicationusingcellchat
AT ivanchang inferenceandanalysisofcellcellcommunicationusingcellchat
AT raulramos inferenceandanalysisofcellcellcommunicationusingcellchat
AT chenhsiangkuan inferenceandanalysisofcellcellcommunicationusingcellchat
AT peggymyung inferenceandanalysisofcellcellcommunicationusingcellchat
AT maksimvplikus inferenceandanalysisofcellcellcommunicationusingcellchat
AT qingnie inferenceandanalysisofcellcellcommunicationusingcellchat
_version_ 1718391580662956032