Predicting the Photosynthetic Rate of Chinese Brassica Using Deep Learning Methods
Water stress is a significant element impacting photosynthesis, which is one of the major physiological activities governing crop growth and development. In this study, the photosynthetic rate of <i>Brassica chinensis</i> L. var. <i>parachinensis</i> (Bailey) (referred to as...
Enregistré dans:
Auteurs principaux: | Peng Gao, Jiaxing Xie, Mingxin Yang, Ping Zhou, Gaotian Liang, Yufeng Chen, Daozong Sun, Xiongzhe Han, Weixing Wang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/eacea0a58ee04b8d8e8d3543d082f7ae |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Simulating Canopy Temperature Using a Random Forest Model to Calculate the Crop Water Stress Index of Chinese Brassica
par: Mingxin Yang, et autres
Publié: (2021) -
Deep Spatial-Spectral Subspace Clustering for Hyperspectral Images Based on Contrastive Learning
par: Xiang Hu, et autres
Publié: (2021) -
Internet of Drones Intrusion Detection Using Deep Learning
par: Rabie A. Ramadan, et autres
Publié: (2021) -
Effects of zinc fertilizer rate and application method on photosynthetic characteristics and grain yield of summer maize
par: Liu,H, et autres
Publié: (2016) -
Predicting Changes in Spatiotemporal Groundwater Storage Through the Integration of Multi-Satellite Data and Deep Learning Models
par: Jae Young Seo, et autres
Publié: (2021)