Predicting the Photosynthetic Rate of Chinese Brassica Using Deep Learning Methods
Water stress is a significant element impacting photosynthesis, which is one of the major physiological activities governing crop growth and development. In this study, the photosynthetic rate of <i>Brassica chinensis</i> L. var. <i>parachinensis</i> (Bailey) (referred to as...
Guardado en:
Autores principales: | Peng Gao, Jiaxing Xie, Mingxin Yang, Ping Zhou, Gaotian Liang, Yufeng Chen, Daozong Sun, Xiongzhe Han, Weixing Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eacea0a58ee04b8d8e8d3543d082f7ae |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Simulating Canopy Temperature Using a Random Forest Model to Calculate the Crop Water Stress Index of Chinese Brassica
por: Mingxin Yang, et al.
Publicado: (2021) -
Deep Spatial-Spectral Subspace Clustering for Hyperspectral Images Based on Contrastive Learning
por: Xiang Hu, et al.
Publicado: (2021) -
Internet of Drones Intrusion Detection Using Deep Learning
por: Rabie A. Ramadan, et al.
Publicado: (2021) -
Effects of zinc fertilizer rate and application method on photosynthetic characteristics and grain yield of summer maize
por: Liu,H, et al.
Publicado: (2016) -
Predicting Changes in Spatiotemporal Groundwater Storage Through the Integration of Multi-Satellite Data and Deep Learning Models
por: Jae Young Seo, et al.
Publicado: (2021)