Modeling and Energy Consumption of Unilateral Heating Process of Flat Wood Details

A methodology has been suggested for mathematical modeling and research of two mutually connected problems: the temperature distribution along the thickness of flat wood details subjected to unilateral heating and the energy consumption of this process. For the realization of the methodology, a 1-di...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nencho Deliiski, Neno Trichkov, Dimitar Angelski, Ladislav Dzurenda
Formato: article
Lenguaje:EN
Publicado: University of Zagreb, Faculty of Forestry and Wood Technology 2017
Materias:
Acceso en línea:https://doaj.org/article/ead2a3f5f70140ec9a82a40b703af16c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ead2a3f5f70140ec9a82a40b703af16c
record_format dspace
spelling oai:doaj.org-article:ead2a3f5f70140ec9a82a40b703af16c2021-12-02T06:12:10ZModeling and Energy Consumption of Unilateral Heating Process of Flat Wood Details10.5552/drind.2016.15180012-67721847-1153https://doaj.org/article/ead2a3f5f70140ec9a82a40b703af16c2017-01-01T00:00:00Zhttp://hrcak.srce.hr/file/254618https://doaj.org/toc/0012-6772https://doaj.org/toc/1847-1153A methodology has been suggested for mathematical modeling and research of two mutually connected problems: the temperature distribution along the thickness of flat wood details subjected to unilateral heating and the energy consumption of this process. For the realization of the methodology, a 1-dimensional mathematical model has been created and solved for the transient linear heat conduction in flat wood details during their unilateral heating at arbitrary initial and boundary conditions encountered in the practice. Based on the integration of the model’s solutions, a numerical approach has been suggested for the computation of the specific energy consumption (for 1 m2) and the specific heat flux needed for the heating of the details and for the covering of their heat emission in the surrounding environment during unilateral heating aimed at wood plasticizing and bending. This paper presents solutions of the model concerning the non-stationary temperature distribution along the thickness of spruce details with thicknesses of 6, 8 and 10 mm and the non-stationary change in the specific energy consumption and in the specific heat flux during unilateral heating at temperatures of the electrically heated metal band equal to 100, 120, and 140 ºC aimed at plasticizing and bending of the details in the production of outside curved parts of the body of string musical instruments. The obtained results can be used for technological and energy calculations and for analysis of processes of unilateral heating of wood details at different boundary conditions, as well as in software for systems for model based automatic control of such processes aimed at bending of the heated and plasticized details.Nencho DeliiskiNeno TrichkovDimitar AngelskiLadislav DzurendaUniversity of Zagreb, Faculty of Forestry and Wood Technologyarticleunilateral heatingmodelingwood detailsplasticizingbendingspecifi c energy consumptionspecific energy consumptionForestrySD1-669.5ENDrvna Industrija, Vol 67, Iss 4, Pp 381-391 (2017)
institution DOAJ
collection DOAJ
language EN
topic unilateral heating
modeling
wood details
plasticizing
bending
specifi c energy consumption
specific energy consumption
Forestry
SD1-669.5
spellingShingle unilateral heating
modeling
wood details
plasticizing
bending
specifi c energy consumption
specific energy consumption
Forestry
SD1-669.5
Nencho Deliiski
Neno Trichkov
Dimitar Angelski
Ladislav Dzurenda
Modeling and Energy Consumption of Unilateral Heating Process of Flat Wood Details
description A methodology has been suggested for mathematical modeling and research of two mutually connected problems: the temperature distribution along the thickness of flat wood details subjected to unilateral heating and the energy consumption of this process. For the realization of the methodology, a 1-dimensional mathematical model has been created and solved for the transient linear heat conduction in flat wood details during their unilateral heating at arbitrary initial and boundary conditions encountered in the practice. Based on the integration of the model’s solutions, a numerical approach has been suggested for the computation of the specific energy consumption (for 1 m2) and the specific heat flux needed for the heating of the details and for the covering of their heat emission in the surrounding environment during unilateral heating aimed at wood plasticizing and bending. This paper presents solutions of the model concerning the non-stationary temperature distribution along the thickness of spruce details with thicknesses of 6, 8 and 10 mm and the non-stationary change in the specific energy consumption and in the specific heat flux during unilateral heating at temperatures of the electrically heated metal band equal to 100, 120, and 140 ºC aimed at plasticizing and bending of the details in the production of outside curved parts of the body of string musical instruments. The obtained results can be used for technological and energy calculations and for analysis of processes of unilateral heating of wood details at different boundary conditions, as well as in software for systems for model based automatic control of such processes aimed at bending of the heated and plasticized details.
format article
author Nencho Deliiski
Neno Trichkov
Dimitar Angelski
Ladislav Dzurenda
author_facet Nencho Deliiski
Neno Trichkov
Dimitar Angelski
Ladislav Dzurenda
author_sort Nencho Deliiski
title Modeling and Energy Consumption of Unilateral Heating Process of Flat Wood Details
title_short Modeling and Energy Consumption of Unilateral Heating Process of Flat Wood Details
title_full Modeling and Energy Consumption of Unilateral Heating Process of Flat Wood Details
title_fullStr Modeling and Energy Consumption of Unilateral Heating Process of Flat Wood Details
title_full_unstemmed Modeling and Energy Consumption of Unilateral Heating Process of Flat Wood Details
title_sort modeling and energy consumption of unilateral heating process of flat wood details
publisher University of Zagreb, Faculty of Forestry and Wood Technology
publishDate 2017
url https://doaj.org/article/ead2a3f5f70140ec9a82a40b703af16c
work_keys_str_mv AT nenchodeliiski modelingandenergyconsumptionofunilateralheatingprocessofflatwooddetails
AT nenotrichkov modelingandenergyconsumptionofunilateralheatingprocessofflatwooddetails
AT dimitarangelski modelingandenergyconsumptionofunilateralheatingprocessofflatwooddetails
AT ladislavdzurenda modelingandenergyconsumptionofunilateralheatingprocessofflatwooddetails
_version_ 1718400025559564288