The Concept of Using LSTM to Detect Moisture in Brick Walls by Means of Electrical Impedance Tomography
This paper refers to an original concept of tomographic measurement of brick wall humidity using an algorithm based on long short-term memory (LSTM) neural networks. The measurement vector was treated as a data sequence with a single time step in the presented study. This approach enabled the use of...
Guardado en:
Autores principales: | Grzegorz Kłosowski, Anna Hoła, Tomasz Rymarczyk, Łukasz Skowron, Tomasz Wołowiec, Marcin Kowalski |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ead541ecd1414d3bb57bd0db98969f67 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comparison of Machine Learning Methods for Image Reconstruction Using the LSTM Classifier in Industrial Electrical Tomography
por: Grzegorz Kłosowski, et al.
Publicado: (2021) -
Research on LSTM+Attention Model of Infant Cry Classification
por: Tianye Jian, et al.
Publicado: (2021) -
Proyección del precio de criptomonedas basado en Tweets empleando LSTM
por: Regal,Andrés, et al.
Publicado: (2019) -
Short-term prediction of wind power density using convolutional LSTM network
por: Gupta Deepak, et al.
Publicado: (2021) -
An experimental and numerical study of moisture transport and moisture-induced strain in fast-grown Sitka spruce
por: O'Ceallaigh,Conan, et al.
Publicado: (2019)