Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition
According to a recently conducted survey on surgical complication mortality rate, 47% of such cases are due to anesthetics overdose. This indicates that there is an urgent need to moderate the level of anesthesia. Recently deep learning (DL) methods have played a major role in estimating the depth o...
Saved in:
Main Authors: | Ravichandra Madanu, Farhan Rahman, Maysam F. Abbod, Shou-Zen Fan, Jiann-Shing Shieh |
---|---|
Format: | article |
Language: | EN |
Published: |
AIMS Press
2021
|
Subjects: | |
Online Access: | https://doaj.org/article/eaf41bbfae364d2fbdb77b6c79ceb3ab |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Application of Empirical Mode Decomposition and Extreme Learning Machine Algorithms on Prediction of the Surface Vibration Signal
by: Yan Shen, et al.
Published: (2021) -
Using Temporal and Spatial Scales to Unravel the Effects of Climatic Factors on Vegetation Variations in China
by: Yaodong Jing, et al.
Published: (2021) -
A prediction model of aquaculture water quality based on multiscale decomposition
by: Huanhai Yang, et al.
Published: (2021) -
EEG Artifact Removal System for Depression Using a Hybrid Denoising Approach
by: Chamandeep Kaur, et al.
Published: (2021) -
Relationship between net primary production and climate change in different vegetation zones based on EEMD detrending – A case study of Northwest China
by: Huiyu Liu, et al.
Published: (2021)