Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition
According to a recently conducted survey on surgical complication mortality rate, 47% of such cases are due to anesthetics overdose. This indicates that there is an urgent need to moderate the level of anesthesia. Recently deep learning (DL) methods have played a major role in estimating the depth o...
Guardado en:
Autores principales: | Ravichandra Madanu, Farhan Rahman, Maysam F. Abbod, Shou-Zen Fan, Jiann-Shing Shieh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eaf41bbfae364d2fbdb77b6c79ceb3ab |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Application of Empirical Mode Decomposition and Extreme Learning Machine Algorithms on Prediction of the Surface Vibration Signal
por: Yan Shen, et al.
Publicado: (2021) -
Using Temporal and Spatial Scales to Unravel the Effects of Climatic Factors on Vegetation Variations in China
por: Yaodong Jing, et al.
Publicado: (2021) -
A prediction model of aquaculture water quality based on multiscale decomposition
por: Huanhai Yang, et al.
Publicado: (2021) -
EEG Artifact Removal System for Depression Using a Hybrid Denoising Approach
por: Chamandeep Kaur, et al.
Publicado: (2021) -
Relationship between net primary production and climate change in different vegetation zones based on EEMD detrending – A case study of Northwest China
por: Huiyu Liu, et al.
Publicado: (2021)