Compact spectroscopy of keV to MeV X-rays from a laser wakefield accelerator

Abstract We reconstruct spectra of secondary X-rays from a tunable 250–350 MeV laser wakefield electron accelerator from single-shot X-ray depth-energy measurements in a compact (7.5 × 7.5 × 15 cm), modular X-ray calorimeter made of alternating layers of absorbing materials and imaging plates. X-ray...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: A. Hannasch, A. Laso Garcia, M. LaBerge, R. Zgadzaj, A. Köhler, J. P. Couperus Cabadağ, O. Zarini, T. Kurz, A. Ferrari, M. Molodtsova, L. Naumann, T. E. Cowan, U. Schramm, A. Irman, M. C. Downer
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/eaf60a2fc3cd454c90139f4fc9eaa78d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract We reconstruct spectra of secondary X-rays from a tunable 250–350 MeV laser wakefield electron accelerator from single-shot X-ray depth-energy measurements in a compact (7.5 × 7.5 × 15 cm), modular X-ray calorimeter made of alternating layers of absorbing materials and imaging plates. X-rays range from few-keV betatron to few-MeV inverse Compton to > 100 MeV bremsstrahlung emission, and are characterized both individually and in mixtures. Geant4 simulations of energy deposition of single-energy X-rays in the stack generate an energy-vs-depth response matrix for a given stack configuration. An iterative reconstruction algorithm based on analytic models of betatron, inverse Compton and bremsstrahlung photon energy distributions then unfolds X-ray spectra, typically within a minute. We discuss uncertainties, limitations and extensions of both measurement and reconstruction methods.