A Novel Data Augmentation Technique and Deep Learning Model for Web Application Security
Web applications are often exposed to attacks because of the critical information and valuable assets they host. In this study, Bi-LSTM based web application security models were developed in order to detect web attacks and classify them into binary or multiple classes using HTTP requests. A novel d...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eaf8645eb10b476b8d107ee7292c1a89 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:eaf8645eb10b476b8d107ee7292c1a89 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:eaf8645eb10b476b8d107ee7292c1a892021-11-18T00:06:24ZA Novel Data Augmentation Technique and Deep Learning Model for Web Application Security2169-353610.1109/ACCESS.2021.3125785https://doaj.org/article/eaf8645eb10b476b8d107ee7292c1a892021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9605636/https://doaj.org/toc/2169-3536Web applications are often exposed to attacks because of the critical information and valuable assets they host. In this study, Bi-LSTM based web application security models were developed in order to detect web attacks and classify them into binary or multiple classes using HTTP requests. A novel data augmentation technique based on the self-adapting noise adding method (DA-SANA) was developed. The DA-SANA method solves the low sensitivity problem caused by imbalanced data and the complex structure of multi-class classification in web attack detection. Experimental evaluations are carried out in detail using two benchmark web security datasets and a newly created dataset within the scope of the study. The achieved worst case detection rates are 98.34% and 93.91% for binary-class and multi-class classifications, respectively. The proposed DA-SANA technique provides an average of 6.52% improvement in multi-class classification for two datasets. These results revealed that the best classification performance values were achieved when compared with previous studies.Hacer KaracanMehmet SevriIEEEarticleWeb securityanomaly detectiondeep learningBi-LSTMdata augmentationElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 150781-150797 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Web security anomaly detection deep learning Bi-LSTM data augmentation Electrical engineering. Electronics. Nuclear engineering TK1-9971 |
spellingShingle |
Web security anomaly detection deep learning Bi-LSTM data augmentation Electrical engineering. Electronics. Nuclear engineering TK1-9971 Hacer Karacan Mehmet Sevri A Novel Data Augmentation Technique and Deep Learning Model for Web Application Security |
description |
Web applications are often exposed to attacks because of the critical information and valuable assets they host. In this study, Bi-LSTM based web application security models were developed in order to detect web attacks and classify them into binary or multiple classes using HTTP requests. A novel data augmentation technique based on the self-adapting noise adding method (DA-SANA) was developed. The DA-SANA method solves the low sensitivity problem caused by imbalanced data and the complex structure of multi-class classification in web attack detection. Experimental evaluations are carried out in detail using two benchmark web security datasets and a newly created dataset within the scope of the study. The achieved worst case detection rates are 98.34% and 93.91% for binary-class and multi-class classifications, respectively. The proposed DA-SANA technique provides an average of 6.52% improvement in multi-class classification for two datasets. These results revealed that the best classification performance values were achieved when compared with previous studies. |
format |
article |
author |
Hacer Karacan Mehmet Sevri |
author_facet |
Hacer Karacan Mehmet Sevri |
author_sort |
Hacer Karacan |
title |
A Novel Data Augmentation Technique and Deep Learning Model for Web Application Security |
title_short |
A Novel Data Augmentation Technique and Deep Learning Model for Web Application Security |
title_full |
A Novel Data Augmentation Technique and Deep Learning Model for Web Application Security |
title_fullStr |
A Novel Data Augmentation Technique and Deep Learning Model for Web Application Security |
title_full_unstemmed |
A Novel Data Augmentation Technique and Deep Learning Model for Web Application Security |
title_sort |
novel data augmentation technique and deep learning model for web application security |
publisher |
IEEE |
publishDate |
2021 |
url |
https://doaj.org/article/eaf8645eb10b476b8d107ee7292c1a89 |
work_keys_str_mv |
AT hacerkaracan anoveldataaugmentationtechniqueanddeeplearningmodelforwebapplicationsecurity AT mehmetsevri anoveldataaugmentationtechniqueanddeeplearningmodelforwebapplicationsecurity AT hacerkaracan noveldataaugmentationtechniqueanddeeplearningmodelforwebapplicationsecurity AT mehmetsevri noveldataaugmentationtechniqueanddeeplearningmodelforwebapplicationsecurity |
_version_ |
1718425258430562304 |