A Novel Data Augmentation Technique and Deep Learning Model for Web Application Security
Web applications are often exposed to attacks because of the critical information and valuable assets they host. In this study, Bi-LSTM based web application security models were developed in order to detect web attacks and classify them into binary or multiple classes using HTTP requests. A novel d...
Guardado en:
Autores principales: | Hacer Karacan, Mehmet Sevri |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eaf8645eb10b476b8d107ee7292c1a89 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
E-SFD: Explainable Sensor Fault Detection in the ICS Anomaly Detection System
por: Chanwoong Hwang, et al.
Publicado: (2021) -
A Robust Framework for MADS Based on DL Techniques on the IoT
por: Hussah Talal, et al.
Publicado: (2021) -
MEML: A Deep Data Augmentation Method by Mean Extrapolation in Middle Layers
por: Dongchen Liu, et al.
Publicado: (2021) -
Self-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation
por: Seungdong Yoa, et al.
Publicado: (2021) -
Multi-View Data Augmentation to Improve Wound Segmentation on 3D Surface Model by Deep Learning
por: R. Niri, et al.
Publicado: (2021)