Molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae
Abstract The use of lignocellulosic-based fermentation media will be a necessary part of the transition to a circular bio-economy. These media contain many inhibitors to microbial growth, including acetic acid. Under industrially relevant conditions, acetic acid enters the cell predominantly through...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eb4202100acf44439af78cf73782172f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:eb4202100acf44439af78cf73782172f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:eb4202100acf44439af78cf73782172f2021-12-02T16:38:49ZMolecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae10.1038/s41598-021-96757-y2045-2322https://doaj.org/article/eb4202100acf44439af78cf73782172f2021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-96757-yhttps://doaj.org/toc/2045-2322Abstract The use of lignocellulosic-based fermentation media will be a necessary part of the transition to a circular bio-economy. These media contain many inhibitors to microbial growth, including acetic acid. Under industrially relevant conditions, acetic acid enters the cell predominantly through passive diffusion across the plasma membrane. The lipid composition of the membrane determines the rate of uptake of acetic acid, and thicker, more rigid membranes impede passive diffusion. We hypothesized that the elongation of glycerophospholipid fatty acids would lead to thicker and more rigid membranes, reducing the influx of acetic acid. Molecular dynamics simulations were used to predict the changes in membrane properties. Heterologous expression of Arabidopsis thaliana genes fatty acid elongase 1 (FAE1) and glycerol-3-phosphate acyltransferase 5 (GPAT5) increased the average fatty acid chain length. However, this did not lead to a reduction in the net uptake rate of acetic acid. Despite successful strain engineering, the net uptake rate of acetic acid did not decrease. We suggest that changes in the relative abundance of certain membrane lipid headgroups could mitigate the effect of longer fatty acid chains, resulting in a higher net uptake rate of acetic acid.Jeroen M. MaertensSimone ScrimaMatteo LambrughiSamuel GenhedenCecilia TrivellinLeif A. ErikssonElena PapaleoLisbeth OlssonMaurizio BettigaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-16 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jeroen M. Maertens Simone Scrima Matteo Lambrughi Samuel Genheden Cecilia Trivellin Leif A. Eriksson Elena Papaleo Lisbeth Olsson Maurizio Bettiga Molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae |
description |
Abstract The use of lignocellulosic-based fermentation media will be a necessary part of the transition to a circular bio-economy. These media contain many inhibitors to microbial growth, including acetic acid. Under industrially relevant conditions, acetic acid enters the cell predominantly through passive diffusion across the plasma membrane. The lipid composition of the membrane determines the rate of uptake of acetic acid, and thicker, more rigid membranes impede passive diffusion. We hypothesized that the elongation of glycerophospholipid fatty acids would lead to thicker and more rigid membranes, reducing the influx of acetic acid. Molecular dynamics simulations were used to predict the changes in membrane properties. Heterologous expression of Arabidopsis thaliana genes fatty acid elongase 1 (FAE1) and glycerol-3-phosphate acyltransferase 5 (GPAT5) increased the average fatty acid chain length. However, this did not lead to a reduction in the net uptake rate of acetic acid. Despite successful strain engineering, the net uptake rate of acetic acid did not decrease. We suggest that changes in the relative abundance of certain membrane lipid headgroups could mitigate the effect of longer fatty acid chains, resulting in a higher net uptake rate of acetic acid. |
format |
article |
author |
Jeroen M. Maertens Simone Scrima Matteo Lambrughi Samuel Genheden Cecilia Trivellin Leif A. Eriksson Elena Papaleo Lisbeth Olsson Maurizio Bettiga |
author_facet |
Jeroen M. Maertens Simone Scrima Matteo Lambrughi Samuel Genheden Cecilia Trivellin Leif A. Eriksson Elena Papaleo Lisbeth Olsson Maurizio Bettiga |
author_sort |
Jeroen M. Maertens |
title |
Molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae |
title_short |
Molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae |
title_full |
Molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae |
title_fullStr |
Molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae |
title_full_unstemmed |
Molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in Saccharomyces cerevisiae |
title_sort |
molecular-dynamics-simulation-guided membrane engineering allows the increase of membrane fatty acid chain length in saccharomyces cerevisiae |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/eb4202100acf44439af78cf73782172f |
work_keys_str_mv |
AT jeroenmmaertens moleculardynamicssimulationguidedmembraneengineeringallowstheincreaseofmembranefattyacidchainlengthinsaccharomycescerevisiae AT simonescrima moleculardynamicssimulationguidedmembraneengineeringallowstheincreaseofmembranefattyacidchainlengthinsaccharomycescerevisiae AT matteolambrughi moleculardynamicssimulationguidedmembraneengineeringallowstheincreaseofmembranefattyacidchainlengthinsaccharomycescerevisiae AT samuelgenheden moleculardynamicssimulationguidedmembraneengineeringallowstheincreaseofmembranefattyacidchainlengthinsaccharomycescerevisiae AT ceciliatrivellin moleculardynamicssimulationguidedmembraneengineeringallowstheincreaseofmembranefattyacidchainlengthinsaccharomycescerevisiae AT leifaeriksson moleculardynamicssimulationguidedmembraneengineeringallowstheincreaseofmembranefattyacidchainlengthinsaccharomycescerevisiae AT elenapapaleo moleculardynamicssimulationguidedmembraneengineeringallowstheincreaseofmembranefattyacidchainlengthinsaccharomycescerevisiae AT lisbetholsson moleculardynamicssimulationguidedmembraneengineeringallowstheincreaseofmembranefattyacidchainlengthinsaccharomycescerevisiae AT mauriziobettiga moleculardynamicssimulationguidedmembraneengineeringallowstheincreaseofmembranefattyacidchainlengthinsaccharomycescerevisiae |
_version_ |
1718383607707336704 |