Use of Lactobacillus plantarum (strains 22F and 25F) and Pediococcus acidilactici (strain 72N) as replacements for antibiotic-growth promotants in pigs

Abstract The lactic acid bacteria (LAB) Lactobacillus plantarum (strains 22F and 25F) and Pediococcus acidilactici (strain 72N) have appeared promising as replacements for antibiotics in in vitro studies. Microencapsulation, especially by the spray-drying method, has been used to preserve their num...

Full description

Saved in:
Bibliographic Details
Main Authors: Pawiya Pupa, Prasert Apiwatsiri, Wandee Sirichokchatchawan, Nopadon Pirarat, Tanawong Maison, Anantawat Koontanatechanon, Nuvee Prapasarakul
Format: article
Language:EN
Published: Nature Portfolio 2021
Subjects:
R
Q
Online Access:https://doaj.org/article/eb460bb01b8d4e8e9e20c0b5cdf0d6f9
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The lactic acid bacteria (LAB) Lactobacillus plantarum (strains 22F and 25F) and Pediococcus acidilactici (strain 72N) have appeared promising as replacements for antibiotics in in vitro studies. Microencapsulation, especially by the spray-drying method, has been used to preserve their numbers and characteristics during storage and digestion. This study compared the efficacy of these strains and their microencapsulated form with antibiotic usage on growth performance, faecal microbial counts, and intestinal morphology in nursing-finishing pigs. A total of 240 healthy neonatal pigs were treated on days 0, 3, 6, 9, and 12 after cross-fostering. Sterile peptone water was delivered orally to the control and antibiotic groups. Spray-dried Lactobacillus plantarum strain 22F stored for 6-months was administered to piglets in the spraydry group. Three ml of each the three fresh strains (109 CFU/mL) were orally administered to piglets in each group. All pigs received the basal diets, but these were supplemented with routine antibiotic for the antibiotic group. Pigs in all the probiotic supplemented groups exhibited a better average daily gain and feed conversion ratio than those of the controls in the nursery and grower phases. Probiotic supplementation increased viable lactobacilli and decreased enterobacterial counts. Antibiotic additives reduced both enterobacterial and lactobacilli counts. Villous height and villous height:crypt depth ratio were greater in probiotic and antibiotic supplemented pigs comparing to the controls, especially in the jejunum. The results demonstrated the feasibility of using these strains as a substitute for antibiotics and the practicality of the microencapsulation protocol for use in swine farms.