Improving Cell Penetration of Gold Nanorods by Using an Amphipathic Arginine Rich Peptide

Ana L Riveros,1,2 Cynthia Eggeling,3 Sebastián Riquelme,1 Carolina Adura,1 Carmen López-Iglesias,4 Fanny Guzmán,3 Eyleen Araya,5 Mario Almada,6 Josué Juárez,6 Miguel A Valdez,6 Ignacio A Fuentevilla,1,2,7 Olga López,8 Marcelo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Riveros AL, Eggeling C, Riquelme S, Adura C, López-Iglesias C, Guzmán F, Araya E, Almada M, Juárez J, Valdez MA, Fuentevilla IA, López O, Kogan MJ
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2020
Materias:
Acceso en línea:https://doaj.org/article/eb51247877d64e91b2e3b95b0423ebcd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Ana L Riveros,1,2 Cynthia Eggeling,3 Sebastián Riquelme,1 Carolina Adura,1 Carmen López-Iglesias,4 Fanny Guzmán,3 Eyleen Araya,5 Mario Almada,6 Josué Juárez,6 Miguel A Valdez,6 Ignacio A Fuentevilla,1,2,7 Olga López,8 Marcelo J Kogan1,2 1Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; 2Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile; 3Núcleo de Biotecnología Curauma (NBC), Universidad Católica de Valparaíso, Valparaíso, Chile; 4Microscopy CORE Lab, The Maastricht Multimodal Molecular Imaging Institute FHML, Maastricht University, Maastrich, Netherlands; 5Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile; 6Departamento de Física, Universidad de Sonora, Hermosillo, Sonora, México; 7Laboratorio de Investigación en nutrición funcional (LINF), Instituto de Nutrición y Tecnología de los alimentos (INTA), Universidad de Chile, Santiago, Chile; 8Department Surfactants and Nanobiotechnology, Institute for advanced chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Barcelona, SpainCorrespondence: Marcelo J Kogan; Ana L RiverosDepartment of Pharmacological and Toxicological Chemistry, University of Chile, Santos Dumont 964, Independencia, Santiago 8380494, ChileTel +56 2 29782897; +56 2 29782918Email mkogan@ciq.uchile.cl; ariveros@uchile.clIntroduction: Gold nanorods are highly reactive, have a large surface-to-volume ratio, and can be functionalized with biomolecules. Gold nanorods can absorb infrared electromagnetic radiation, which is subsequently dispersed as local heat. Gold nanoparticles can be used as powerful tools for the diagnosis and therapy of different diseases. To improve the biological barrier permeation of nanoparticles with low cytotoxicity, in this study, we conjugated gold nanorods with cell-penetrating peptides (oligoarginines) and with the amphipathic peptide CLPFFD.Methods: We studied the interaction of the functionalized gold nanorods with biological membrane models (liposomes) by dynamic light scattering, transmission electron microscopy and the Langmuir balance. Furthermore, we evaluated the effects on cell viability and permeability with an MTS assay and TEM.Results and Discussion: The interaction study by DLS, the Langmuir balance and cryo-TEM support that GNR-Arg7CLPFFD enhances the interactions between GNRs and biological membranes. In addition, cells treated with GNR-Arg7CLPFFD internalized 80% more nanoparticles than cells treated with GNR alone and did not induce cell damage.Conclusion: Our results indicate that incorporation of an amphipathic sequence into oligoarginines for the functionalization of gold nanorods enhances biological membrane nanoparticle interactions and nanoparticle cell permeability with respect to nanorods functionalized with oligoarginine. Overall, functionalized gold nanorods with amphipathic arginine rich peptides might be candidates for improving drug delivery by facilitating biological barrier permeation.Keywords: gold nanorods, cell-penetrating peptides, amphipathic arginine rich peptide, liposome, biological barrier permeation