Discriminative and Distinct Phenotyping by Constrained Tensor Factorization
Abstract Adoption of Electronic Health Record (EHR) systems has led to collection of massive healthcare data, which creates oppor- tunities and challenges to study them. Computational phenotyping offers a promising way to convert the sparse and complex data into meaningful concepts that are interpre...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eb52f415b71f4e03ab764d27896a50a6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:eb52f415b71f4e03ab764d27896a50a6 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:eb52f415b71f4e03ab764d27896a50a62021-12-02T15:06:23ZDiscriminative and Distinct Phenotyping by Constrained Tensor Factorization10.1038/s41598-017-01139-y2045-2322https://doaj.org/article/eb52f415b71f4e03ab764d27896a50a62017-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-01139-yhttps://doaj.org/toc/2045-2322Abstract Adoption of Electronic Health Record (EHR) systems has led to collection of massive healthcare data, which creates oppor- tunities and challenges to study them. Computational phenotyping offers a promising way to convert the sparse and complex data into meaningful concepts that are interpretable to healthcare givers to make use of them. We propose a novel su- pervised nonnegative tensor factorization methodology that derives discriminative and distinct phenotypes. We represented co-occurrence of diagnoses and prescriptions in EHRs as a third-order tensor, and decomposed it using the CP algorithm. We evaluated discriminative power of our models with an Intensive Care Unit database (MIMIC-III) and demonstrated superior performance than state-of-the-art ICU mortality calculators (e.g., APACHE II, SAPS II). Example of the resulted phenotypes are sepsis with acute kidney injury, cardiac surgery, anemia, respiratory failure, heart failure, cardiac arrest, metastatic cancer (requiring ICU), end-stage dementia (requiring ICU and transitioned to comfort-care), intraabdominal conditions, and alcohol abuse/withdrawal.Yejin KimRobert El-KarehJimeng SunHwanjo YuXiaoqian JiangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-12 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Yejin Kim Robert El-Kareh Jimeng Sun Hwanjo Yu Xiaoqian Jiang Discriminative and Distinct Phenotyping by Constrained Tensor Factorization |
description |
Abstract Adoption of Electronic Health Record (EHR) systems has led to collection of massive healthcare data, which creates oppor- tunities and challenges to study them. Computational phenotyping offers a promising way to convert the sparse and complex data into meaningful concepts that are interpretable to healthcare givers to make use of them. We propose a novel su- pervised nonnegative tensor factorization methodology that derives discriminative and distinct phenotypes. We represented co-occurrence of diagnoses and prescriptions in EHRs as a third-order tensor, and decomposed it using the CP algorithm. We evaluated discriminative power of our models with an Intensive Care Unit database (MIMIC-III) and demonstrated superior performance than state-of-the-art ICU mortality calculators (e.g., APACHE II, SAPS II). Example of the resulted phenotypes are sepsis with acute kidney injury, cardiac surgery, anemia, respiratory failure, heart failure, cardiac arrest, metastatic cancer (requiring ICU), end-stage dementia (requiring ICU and transitioned to comfort-care), intraabdominal conditions, and alcohol abuse/withdrawal. |
format |
article |
author |
Yejin Kim Robert El-Kareh Jimeng Sun Hwanjo Yu Xiaoqian Jiang |
author_facet |
Yejin Kim Robert El-Kareh Jimeng Sun Hwanjo Yu Xiaoqian Jiang |
author_sort |
Yejin Kim |
title |
Discriminative and Distinct Phenotyping by Constrained Tensor Factorization |
title_short |
Discriminative and Distinct Phenotyping by Constrained Tensor Factorization |
title_full |
Discriminative and Distinct Phenotyping by Constrained Tensor Factorization |
title_fullStr |
Discriminative and Distinct Phenotyping by Constrained Tensor Factorization |
title_full_unstemmed |
Discriminative and Distinct Phenotyping by Constrained Tensor Factorization |
title_sort |
discriminative and distinct phenotyping by constrained tensor factorization |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/eb52f415b71f4e03ab764d27896a50a6 |
work_keys_str_mv |
AT yejinkim discriminativeanddistinctphenotypingbyconstrainedtensorfactorization AT robertelkareh discriminativeanddistinctphenotypingbyconstrainedtensorfactorization AT jimengsun discriminativeanddistinctphenotypingbyconstrainedtensorfactorization AT hwanjoyu discriminativeanddistinctphenotypingbyconstrainedtensorfactorization AT xiaoqianjiang discriminativeanddistinctphenotypingbyconstrainedtensorfactorization |
_version_ |
1718388487165575168 |