Machine learning outperforms thermodynamics in measuring how well a many-body system learns a drive
Abstract Diverse many-body systems, from soap bubbles to suspensions to polymers, learn and remember patterns in the drives that push them far from equilibrium. This learning may be leveraged for computation, memory, and engineering. Until now, many-body learning has been detected with thermodynamic...
Guardado en:
Autores principales: | Weishun Zhong, Jacob M. Gold, Sarah Marzen, Jeremy L. England, Nicole Yunger Halpern |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eb5545ace9e5434fa10a500ba5184940 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning
por: Anees Abrol, et al.
Publicado: (2021) -
Explainable machine learning can outperform Cox regression predictions and provide insights in breast cancer survival
por: Arturo Moncada-Torres, et al.
Publicado: (2021) -
Reinforcement Learning for Many-Body Ground-State Preparation Inspired by Counterdiabatic Driving
por: Jiahao Yao, et al.
Publicado: (2021) -
Late diagnoses of Dravet syndrome: How many individuals are we missing?
por: Katri Silvennoinen, et al.
Publicado: (2021) -
Deep-learning-based real-time prediction of acute kidney injury outperforms human predictive performance
por: Nina Rank, et al.
Publicado: (2020)