Automated severity scoring of atopic dermatitis patients by a deep neural network
Abstract Scoring atopic dermatitis (AD) severity with the Eczema Area and Severity Index (EASI) in an objective and reproducible manner is challenging. Automated measurement of erythema, papulation, excoriation, and lichenification severity using images has not yet been investigated. Our aim was to...
Guardado en:
Autores principales: | Chul Hwan Bang, Jae Woong Yoon, Jae Yeon Ryu, Jae Heon Chun, Ju Hee Han, Young Bok Lee, Jun Young Lee, Young Min Park, Suk Jun Lee, Ji Hyun Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eb62cc76b50b46fcba98a52394a5c359 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: Automated severity scoring of atopic dermatitis patients by a deep neural network
por: Chul Hwan Bang, et al.
Publicado: (2021) -
Prospective, comparative clinical pilot study of cold atmospheric plasma device in the treatment of atopic dermatitis
por: Young Jae Kim, et al.
Publicado: (2021) -
Treatment of atopic dermatitis using non-thermal atmospheric plasma in an animal model
por: Ik Jun Moon, et al.
Publicado: (2021) -
Transcriptomic insight into the translational value of two murine models in human atopic dermatitis
por: Young-Won Kim, et al.
Publicado: (2021) -
An important role of α-hemolysin in extracellular vesicles on the development of atopic dermatitis induced by Staphylococcus aureus.
por: Sung-Wook Hong, et al.
Publicado: (2014)