Automated severity scoring of atopic dermatitis patients by a deep neural network
Abstract Scoring atopic dermatitis (AD) severity with the Eczema Area and Severity Index (EASI) in an objective and reproducible manner is challenging. Automated measurement of erythema, papulation, excoriation, and lichenification severity using images has not yet been investigated. Our aim was to...
Enregistré dans:
Auteurs principaux: | Chul Hwan Bang, Jae Woong Yoon, Jae Yeon Ryu, Jae Heon Chun, Ju Hee Han, Young Bok Lee, Jun Young Lee, Young Min Park, Suk Jun Lee, Ji Hyun Lee |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/eb62cc76b50b46fcba98a52394a5c359 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Author Correction: Automated severity scoring of atopic dermatitis patients by a deep neural network
par: Chul Hwan Bang, et autres
Publié: (2021) -
Prospective, comparative clinical pilot study of cold atmospheric plasma device in the treatment of atopic dermatitis
par: Young Jae Kim, et autres
Publié: (2021) -
Treatment of atopic dermatitis using non-thermal atmospheric plasma in an animal model
par: Ik Jun Moon, et autres
Publié: (2021) -
Transcriptomic insight into the translational value of two murine models in human atopic dermatitis
par: Young-Won Kim, et autres
Publié: (2021) -
An important role of α-hemolysin in extracellular vesicles on the development of atopic dermatitis induced by Staphylococcus aureus.
par: Sung-Wook Hong, et autres
Publié: (2014)