Real-Time Dynamic Carbon Content Prediction Model for Second Blowing Stage in BOF Based on CBR and LSTM
The endpoint carbon content is an important target of converters. The precise prediction of carbon content is the key to endpoint control in converter steelmaking. In this study, a real-time dynamic prediction of the carbon content model for the second-blowing stage of the converter steelmaking proc...
Guardado en:
Autores principales: | Maoqiang Gu, Anjun Xu, Hongbing Wang, Zhitong Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eb668bf5f52f4339a54f75f9a961184a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The Concept of Using LSTM to Detect Moisture in Brick Walls by Means of Electrical Impedance Tomography
por: Grzegorz Kłosowski, et al.
Publicado: (2021) -
A Haze Prediction Model in Chengdu Based on LSTM
por: Xinyi Wu, et al.
Publicado: (2021) -
Comparison of Machine Learning Methods for Image Reconstruction Using the LSTM Classifier in Industrial Electrical Tomography
por: Grzegorz Kłosowski, et al.
Publicado: (2021) -
Research on LSTM+Attention Model of Infant Cry Classification
por: Tianye Jian, et al.
Publicado: (2021) -
Short-Term to Long-Term Plasticity Transition Behavior of Memristive Devices with Low Power Consumption via Facilitating Ionic Drift of Implanted Lithium
por: Young Pyo Jeon, et al.
Publicado: (2021)