General decay rate for a viscoelastic wave equation with distributed delay and Balakrishnan-Taylor damping
A nonlinear viscoelastic wave equation with Balakrishnan-Taylor damping and distributed delay is studied. By the energy method we establish the general decay rate under suitable hypothesis.
Guardado en:
Autores principales: | Choucha Abdelbaki, Boulaaras Salah, Ouchenane Djamel |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eb7be7147d504cceb67c05054ad60120 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces
por: Jlali Lotfi
Publicado: (2021) -
Quasi-stability and continuity of attractors for nonlinear system of wave equations
por: Freitas M. M., et al.
Publicado: (2021) -
Bifurcation analysis for a modified quasilinear equation with negative exponent
por: Chen Siyu, et al.
Publicado: (2021) -
Blow up and asymptotic behavior of solutions for a p(x)-Laplacian equation with delay term and variable exponents
por: Stanislav Antontsev, et al.
Publicado: (2021) -
Exponential Stability of laminated beam with constant delay feedback
por: Kassimu Mpungu, et al.
Publicado: (2021)