An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis.

Plant stomata function in innate immunity against bacterial invasion and abscisic acid (ABA) has been suggested to regulate this process. Using genetic, biochemical, and pharmacological approaches, we demonstrate that (i) the Arabidopsis thaliana nine-specific-lipoxygenase encoding gene, LOX1, which...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jean-Luc Montillet, Nathalie Leonhardt, Samuel Mondy, Sylvain Tranchimand, Dominique Rumeau, Marie Boudsocq, Ana Victoria Garcia, Thierry Douki, Jean Bigeard, Christiane Laurière, Anne Chevalier, Carmen Castresana, Heribert Hirt
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
Acceso en línea:https://doaj.org/article/eb85d1aecdd843b799f15ba64abaf177
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:eb85d1aecdd843b799f15ba64abaf177
record_format dspace
spelling oai:doaj.org-article:eb85d1aecdd843b799f15ba64abaf1772021-11-18T05:37:12ZAn abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis.1544-91731545-788510.1371/journal.pbio.1001513https://doaj.org/article/eb85d1aecdd843b799f15ba64abaf1772013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23526882/pdf/?tool=EBIhttps://doaj.org/toc/1544-9173https://doaj.org/toc/1545-7885Plant stomata function in innate immunity against bacterial invasion and abscisic acid (ABA) has been suggested to regulate this process. Using genetic, biochemical, and pharmacological approaches, we demonstrate that (i) the Arabidopsis thaliana nine-specific-lipoxygenase encoding gene, LOX1, which is expressed in guard cells, is required to trigger stomatal closure in response to both bacteria and the pathogen-associated molecular pattern flagellin peptide flg22; (ii) LOX1 participates in stomatal defense; (iii) polyunsaturated fatty acids, the LOX substrates, trigger stomatal closure; (iv) the LOX products, fatty acid hydroperoxides, or reactive electrophile oxylipins induce stomatal closure; and (v) the flg22-mediated stomatal closure is conveyed by both LOX1 and the mitogen-activated protein kinases MPK3 and MPK6 and involves salicylic acid whereas the ABA-induced process depends on the protein kinases OST1, MPK9, or MPK12. Finally, we show that the oxylipin and the ABA pathways converge at the level of the anion channel SLAC1 to regulate stomatal closure. Collectively, our results demonstrate that early biotic signaling in guard cells is an ABA-independent process revealing a novel function of LOX1-dependent stomatal pathway in plant immunity.Jean-Luc MontilletNathalie LeonhardtSamuel MondySylvain TranchimandDominique RumeauMarie BoudsocqAna Victoria GarciaThierry DoukiJean BigeardChristiane LaurièreAnne ChevalierCarmen CastresanaHeribert HirtPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Biology, Vol 11, Iss 3, p e1001513 (2013)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Jean-Luc Montillet
Nathalie Leonhardt
Samuel Mondy
Sylvain Tranchimand
Dominique Rumeau
Marie Boudsocq
Ana Victoria Garcia
Thierry Douki
Jean Bigeard
Christiane Laurière
Anne Chevalier
Carmen Castresana
Heribert Hirt
An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis.
description Plant stomata function in innate immunity against bacterial invasion and abscisic acid (ABA) has been suggested to regulate this process. Using genetic, biochemical, and pharmacological approaches, we demonstrate that (i) the Arabidopsis thaliana nine-specific-lipoxygenase encoding gene, LOX1, which is expressed in guard cells, is required to trigger stomatal closure in response to both bacteria and the pathogen-associated molecular pattern flagellin peptide flg22; (ii) LOX1 participates in stomatal defense; (iii) polyunsaturated fatty acids, the LOX substrates, trigger stomatal closure; (iv) the LOX products, fatty acid hydroperoxides, or reactive electrophile oxylipins induce stomatal closure; and (v) the flg22-mediated stomatal closure is conveyed by both LOX1 and the mitogen-activated protein kinases MPK3 and MPK6 and involves salicylic acid whereas the ABA-induced process depends on the protein kinases OST1, MPK9, or MPK12. Finally, we show that the oxylipin and the ABA pathways converge at the level of the anion channel SLAC1 to regulate stomatal closure. Collectively, our results demonstrate that early biotic signaling in guard cells is an ABA-independent process revealing a novel function of LOX1-dependent stomatal pathway in plant immunity.
format article
author Jean-Luc Montillet
Nathalie Leonhardt
Samuel Mondy
Sylvain Tranchimand
Dominique Rumeau
Marie Boudsocq
Ana Victoria Garcia
Thierry Douki
Jean Bigeard
Christiane Laurière
Anne Chevalier
Carmen Castresana
Heribert Hirt
author_facet Jean-Luc Montillet
Nathalie Leonhardt
Samuel Mondy
Sylvain Tranchimand
Dominique Rumeau
Marie Boudsocq
Ana Victoria Garcia
Thierry Douki
Jean Bigeard
Christiane Laurière
Anne Chevalier
Carmen Castresana
Heribert Hirt
author_sort Jean-Luc Montillet
title An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis.
title_short An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis.
title_full An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis.
title_fullStr An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis.
title_full_unstemmed An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis.
title_sort abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in arabidopsis.
publisher Public Library of Science (PLoS)
publishDate 2013
url https://doaj.org/article/eb85d1aecdd843b799f15ba64abaf177
work_keys_str_mv AT jeanlucmontillet anabscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT nathalieleonhardt anabscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT samuelmondy anabscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT sylvaintranchimand anabscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT dominiquerumeau anabscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT marieboudsocq anabscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT anavictoriagarcia anabscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT thierrydouki anabscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT jeanbigeard anabscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT christianelauriere anabscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT annechevalier anabscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT carmencastresana anabscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT heriberthirt anabscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT jeanlucmontillet abscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT nathalieleonhardt abscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT samuelmondy abscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT sylvaintranchimand abscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT dominiquerumeau abscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT marieboudsocq abscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT anavictoriagarcia abscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT thierrydouki abscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT jeanbigeard abscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT christianelauriere abscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT annechevalier abscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT carmencastresana abscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
AT heriberthirt abscisicacidindependentoxylipinpathwaycontrolsstomatalclosureandimmunedefenseinarabidopsis
_version_ 1718424887563911168