Spectroscopic glimpses of the transition state of ATP hydrolysis trapped in a bacterial DnaB helicase
Here, the authors use solid-state NMR and EPR measurements to characterise the ATP hydrolysis transition state of the oligomeric bacterial DnaB helicase from Helicobacter pylori, which was trapped by using aluminium fluoride as a chemical mimic. They identify protein protons that coordinate to the p...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eb891282fac642d58cd86a545184715e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:eb891282fac642d58cd86a545184715e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:eb891282fac642d58cd86a545184715e2021-12-02T19:12:25ZSpectroscopic glimpses of the transition state of ATP hydrolysis trapped in a bacterial DnaB helicase10.1038/s41467-021-25599-z2041-1723https://doaj.org/article/eb891282fac642d58cd86a545184715e2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25599-zhttps://doaj.org/toc/2041-1723Here, the authors use solid-state NMR and EPR measurements to characterise the ATP hydrolysis transition state of the oligomeric bacterial DnaB helicase from Helicobacter pylori, which was trapped by using aluminium fluoride as a chemical mimic. They identify protein protons that coordinate to the phosphate groups of ADP and DNA and observe that the aluminium fluoride unit is highly mobile and fast-rotating.Alexander A. MalärNino WiliLaura A. VölkerMaria I. KozlovaRiccardo CadalbertAlexander DäppMarco E. WeberJohannes ZehnderGunnar JeschkeHellmut EckertAnja BöckmannDaniel KloseArmen Y. MulkidjanianBeat H. MeierThomas WiegandNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Alexander A. Malär Nino Wili Laura A. Völker Maria I. Kozlova Riccardo Cadalbert Alexander Däpp Marco E. Weber Johannes Zehnder Gunnar Jeschke Hellmut Eckert Anja Böckmann Daniel Klose Armen Y. Mulkidjanian Beat H. Meier Thomas Wiegand Spectroscopic glimpses of the transition state of ATP hydrolysis trapped in a bacterial DnaB helicase |
description |
Here, the authors use solid-state NMR and EPR measurements to characterise the ATP hydrolysis transition state of the oligomeric bacterial DnaB helicase from Helicobacter pylori, which was trapped by using aluminium fluoride as a chemical mimic. They identify protein protons that coordinate to the phosphate groups of ADP and DNA and observe that the aluminium fluoride unit is highly mobile and fast-rotating. |
format |
article |
author |
Alexander A. Malär Nino Wili Laura A. Völker Maria I. Kozlova Riccardo Cadalbert Alexander Däpp Marco E. Weber Johannes Zehnder Gunnar Jeschke Hellmut Eckert Anja Böckmann Daniel Klose Armen Y. Mulkidjanian Beat H. Meier Thomas Wiegand |
author_facet |
Alexander A. Malär Nino Wili Laura A. Völker Maria I. Kozlova Riccardo Cadalbert Alexander Däpp Marco E. Weber Johannes Zehnder Gunnar Jeschke Hellmut Eckert Anja Böckmann Daniel Klose Armen Y. Mulkidjanian Beat H. Meier Thomas Wiegand |
author_sort |
Alexander A. Malär |
title |
Spectroscopic glimpses of the transition state of ATP hydrolysis trapped in a bacterial DnaB helicase |
title_short |
Spectroscopic glimpses of the transition state of ATP hydrolysis trapped in a bacterial DnaB helicase |
title_full |
Spectroscopic glimpses of the transition state of ATP hydrolysis trapped in a bacterial DnaB helicase |
title_fullStr |
Spectroscopic glimpses of the transition state of ATP hydrolysis trapped in a bacterial DnaB helicase |
title_full_unstemmed |
Spectroscopic glimpses of the transition state of ATP hydrolysis trapped in a bacterial DnaB helicase |
title_sort |
spectroscopic glimpses of the transition state of atp hydrolysis trapped in a bacterial dnab helicase |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/eb891282fac642d58cd86a545184715e |
work_keys_str_mv |
AT alexanderamalar spectroscopicglimpsesofthetransitionstateofatphydrolysistrappedinabacterialdnabhelicase AT ninowili spectroscopicglimpsesofthetransitionstateofatphydrolysistrappedinabacterialdnabhelicase AT lauraavolker spectroscopicglimpsesofthetransitionstateofatphydrolysistrappedinabacterialdnabhelicase AT mariaikozlova spectroscopicglimpsesofthetransitionstateofatphydrolysistrappedinabacterialdnabhelicase AT riccardocadalbert spectroscopicglimpsesofthetransitionstateofatphydrolysistrappedinabacterialdnabhelicase AT alexanderdapp spectroscopicglimpsesofthetransitionstateofatphydrolysistrappedinabacterialdnabhelicase AT marcoeweber spectroscopicglimpsesofthetransitionstateofatphydrolysistrappedinabacterialdnabhelicase AT johanneszehnder spectroscopicglimpsesofthetransitionstateofatphydrolysistrappedinabacterialdnabhelicase AT gunnarjeschke spectroscopicglimpsesofthetransitionstateofatphydrolysistrappedinabacterialdnabhelicase AT hellmuteckert spectroscopicglimpsesofthetransitionstateofatphydrolysistrappedinabacterialdnabhelicase AT anjabockmann spectroscopicglimpsesofthetransitionstateofatphydrolysistrappedinabacterialdnabhelicase AT danielklose spectroscopicglimpsesofthetransitionstateofatphydrolysistrappedinabacterialdnabhelicase AT armenymulkidjanian spectroscopicglimpsesofthetransitionstateofatphydrolysistrappedinabacterialdnabhelicase AT beathmeier spectroscopicglimpsesofthetransitionstateofatphydrolysistrappedinabacterialdnabhelicase AT thomaswiegand spectroscopicglimpsesofthetransitionstateofatphydrolysistrappedinabacterialdnabhelicase |
_version_ |
1718377066375675904 |