Onsager algebra and algebraic generalization of Jordan-Wigner transformation
Recently, an algebraic generalization of the Jordan-Wigner transformation was introduced and applied to one- and two-dimensional systems. This transformation is composed of the interactions ηi that appear in the Hamiltonian H as H=∑i=1NJiηi, where Ji are coupling constants. In this short note, it is...
Guardado en:
Autor principal: | Kazuhiko Minami |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eb94af617a8b4d619b3758419e18f1af |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Geometric and algebraic approaches to quantum theory
por: A. Schwarz
Publicado: (2021) -
Landau-Khalatnikov-Fradkin transformations for the two loop massless quark propagator
por: P. Dall'Olio, et al.
Publicado: (2021) -
On massive spin-2 in the Fradkin-Vasiliev formalism. II. General massive case
por: M.V. Khabarov, et al.
Publicado: (2021) -
Generalized Navier–Stokes equations and soft hairy horizons in fluid/gravity correspondence
por: A.J. Ferreira–Martins, et al.
Publicado: (2021) -
BMS flux algebra in celestial holography
por: Laura Donnay, et al.
Publicado: (2021)