A translation enhancer element from black beetle virus engages yeast eIF4G1 to drive cap-independent translation initiation
Abstract Cap-independent translation initiation plays crucial roles in fine-tuning gene expression under global translation shutdown conditions. Translation of uncapped or de-capped transcripts can be stimulated by Cap-independent translation enhancer (CITE) elements, but the mechanisms of CITE-medi...
Enregistré dans:
Auteurs principaux: | , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/eb979a51c5a94d25b5b2eaade80f1f01 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Résumé: | Abstract Cap-independent translation initiation plays crucial roles in fine-tuning gene expression under global translation shutdown conditions. Translation of uncapped or de-capped transcripts can be stimulated by Cap-independent translation enhancer (CITE) elements, but the mechanisms of CITE-mediated translation initiation remain understudied. Here, we characterized a short 5ʹ-UTR RNA sequence from black beetle virus, BBV-seq. Mutational analysis indicates that the entire BBV-seq is required for efficient translation initiation, but this sequence does not operate as an IRES-type module. In yeast cell-free translation extracts, BBV-seq promoted efficient initiation on cap-free mRNA using a scanning mechanism. Moreover, BBV-seq can increase translation efficiency resulting from conventional cap-dependent translation initiation. Using genetic approaches, we found that BBV-seq exploits RNA-binding properties of eIF4G1 to promote initiation. Thus, BBV-seq constitutes a previously uncharacterized short, linear CITE that influences eIF4G1 to initiate 5′ end-dependent, cap-independent translation. These findings bring new insights into CITE-mediated translational control of gene expression. |
---|