Nano-scale mechanisms explain the stiffening and strengthening of ligament tissue with increasing strain rate
Abstract Ligament failure is a major societal burden causing disability and pain. Failure is caused by trauma at high loading rates. At the macroscopic level increasing strain rates cause an increase in failure stress and modulus, but the mechanism for this strain rate dependency is not known. Here...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eb9b490e520641359c2252f872d021ac |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:eb9b490e520641359c2252f872d021ac |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:eb9b490e520641359c2252f872d021ac2021-12-02T15:07:56ZNano-scale mechanisms explain the stiffening and strengthening of ligament tissue with increasing strain rate10.1038/s41598-018-21786-z2045-2322https://doaj.org/article/eb9b490e520641359c2252f872d021ac2018-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-21786-zhttps://doaj.org/toc/2045-2322Abstract Ligament failure is a major societal burden causing disability and pain. Failure is caused by trauma at high loading rates. At the macroscopic level increasing strain rates cause an increase in failure stress and modulus, but the mechanism for this strain rate dependency is not known. Here we investigate the nano scale mechanical property changes of human ligament using mechanical testing combined with synchrotron X-ray diffraction. With increasing strain rate, we observe a significant increase in fibril modulus and a reduction of fibril to tissue strain ratio, revealing that tissue-level stiffening is mainly due to the stiffening of collagen fibrils. Further, we show that the reduction in fibril deformation at higher strain rates is due to reduced molecular strain and fibrillar gaps, and is associated with rapid disruption of matrix-fibril bonding. This reduction in number of interfibrillar cross-links explains the changes in fibril strain; this is verified through computational modelling.Angelo KarunaratneSimin LiAnthony M. J. BullNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-9 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Angelo Karunaratne Simin Li Anthony M. J. Bull Nano-scale mechanisms explain the stiffening and strengthening of ligament tissue with increasing strain rate |
description |
Abstract Ligament failure is a major societal burden causing disability and pain. Failure is caused by trauma at high loading rates. At the macroscopic level increasing strain rates cause an increase in failure stress and modulus, but the mechanism for this strain rate dependency is not known. Here we investigate the nano scale mechanical property changes of human ligament using mechanical testing combined with synchrotron X-ray diffraction. With increasing strain rate, we observe a significant increase in fibril modulus and a reduction of fibril to tissue strain ratio, revealing that tissue-level stiffening is mainly due to the stiffening of collagen fibrils. Further, we show that the reduction in fibril deformation at higher strain rates is due to reduced molecular strain and fibrillar gaps, and is associated with rapid disruption of matrix-fibril bonding. This reduction in number of interfibrillar cross-links explains the changes in fibril strain; this is verified through computational modelling. |
format |
article |
author |
Angelo Karunaratne Simin Li Anthony M. J. Bull |
author_facet |
Angelo Karunaratne Simin Li Anthony M. J. Bull |
author_sort |
Angelo Karunaratne |
title |
Nano-scale mechanisms explain the stiffening and strengthening of ligament tissue with increasing strain rate |
title_short |
Nano-scale mechanisms explain the stiffening and strengthening of ligament tissue with increasing strain rate |
title_full |
Nano-scale mechanisms explain the stiffening and strengthening of ligament tissue with increasing strain rate |
title_fullStr |
Nano-scale mechanisms explain the stiffening and strengthening of ligament tissue with increasing strain rate |
title_full_unstemmed |
Nano-scale mechanisms explain the stiffening and strengthening of ligament tissue with increasing strain rate |
title_sort |
nano-scale mechanisms explain the stiffening and strengthening of ligament tissue with increasing strain rate |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/eb9b490e520641359c2252f872d021ac |
work_keys_str_mv |
AT angelokarunaratne nanoscalemechanismsexplainthestiffeningandstrengtheningofligamenttissuewithincreasingstrainrate AT siminli nanoscalemechanismsexplainthestiffeningandstrengtheningofligamenttissuewithincreasingstrainrate AT anthonymjbull nanoscalemechanismsexplainthestiffeningandstrengtheningofligamenttissuewithincreasingstrainrate |
_version_ |
1718388355769565184 |