Spin Quintet in a Silicon Double Quantum Dot: Spin Blockade and Relaxation
Spins in gate-defined silicon quantum dots are promising candidates for implementing large-scale quantum computing. To read the spin state of these qubits, the mechanism that has provided the highest fidelity is spin-to-charge conversion via singlet-triplet spin blockade, which can be detected in si...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eb9f71a0a9c8445eb900db258d6b98c5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:eb9f71a0a9c8445eb900db258d6b98c5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:eb9f71a0a9c8445eb900db258d6b98c52021-12-02T12:18:24ZSpin Quintet in a Silicon Double Quantum Dot: Spin Blockade and Relaxation10.1103/PhysRevX.10.0410102160-3308https://doaj.org/article/eb9f71a0a9c8445eb900db258d6b98c52020-10-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.10.041010http://doi.org/10.1103/PhysRevX.10.041010https://doaj.org/toc/2160-3308Spins in gate-defined silicon quantum dots are promising candidates for implementing large-scale quantum computing. To read the spin state of these qubits, the mechanism that has provided the highest fidelity is spin-to-charge conversion via singlet-triplet spin blockade, which can be detected in situ using gate-based dispersive sensing. In systems with a complex energy spectrum, like silicon quantum dots, accurately identifying when singlet-triplet blockade occurs is hence of major importance for scalable qubit readout. In this work, we present a description of spin-blockade physics in a tunnel-coupled silicon double quantum dot defined in the corners of a split-gate transistor. Using gate-based magnetospectroscopy, we report successive steps of spin blockade and spin-blockade lifting involving spin states with total spin angular momentum up to S=3. More particularly, we report the formation of a hybridized spin-quintet state and show triplet-quintet and quintet-septet spin blockade, enabling studies of the quintet relaxation dynamics from which we find T_{1}∼4 μs. Finally, we develop a quantum capacitance model that can be applied generally to reconstruct the energy spectrum of a double quantum dot, including the spin-dependent tunnel couplings and the energy splitting between different spin manifolds. Our results allow for the possibility of using Si complementary metal-oxide-semiconductor quantum dots as a tunable platform for studying high-spin systems.Theodor LundbergJing LiLouis HutinBenoit BertrandDavid J. IbbersonChang-Min LeeDavid J. NiegemannMatias UrdampilletaNadia StelmashenkoTristan MeunierJason W. A. RobinsonLisa IbbersonMaud VinetYann-Michel NiquetM. Fernando Gonzalez-ZalbaAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 10, Iss 4, p 041010 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 |
spellingShingle |
Physics QC1-999 Theodor Lundberg Jing Li Louis Hutin Benoit Bertrand David J. Ibberson Chang-Min Lee David J. Niegemann Matias Urdampilleta Nadia Stelmashenko Tristan Meunier Jason W. A. Robinson Lisa Ibberson Maud Vinet Yann-Michel Niquet M. Fernando Gonzalez-Zalba Spin Quintet in a Silicon Double Quantum Dot: Spin Blockade and Relaxation |
description |
Spins in gate-defined silicon quantum dots are promising candidates for implementing large-scale quantum computing. To read the spin state of these qubits, the mechanism that has provided the highest fidelity is spin-to-charge conversion via singlet-triplet spin blockade, which can be detected in situ using gate-based dispersive sensing. In systems with a complex energy spectrum, like silicon quantum dots, accurately identifying when singlet-triplet blockade occurs is hence of major importance for scalable qubit readout. In this work, we present a description of spin-blockade physics in a tunnel-coupled silicon double quantum dot defined in the corners of a split-gate transistor. Using gate-based magnetospectroscopy, we report successive steps of spin blockade and spin-blockade lifting involving spin states with total spin angular momentum up to S=3. More particularly, we report the formation of a hybridized spin-quintet state and show triplet-quintet and quintet-septet spin blockade, enabling studies of the quintet relaxation dynamics from which we find T_{1}∼4 μs. Finally, we develop a quantum capacitance model that can be applied generally to reconstruct the energy spectrum of a double quantum dot, including the spin-dependent tunnel couplings and the energy splitting between different spin manifolds. Our results allow for the possibility of using Si complementary metal-oxide-semiconductor quantum dots as a tunable platform for studying high-spin systems. |
format |
article |
author |
Theodor Lundberg Jing Li Louis Hutin Benoit Bertrand David J. Ibberson Chang-Min Lee David J. Niegemann Matias Urdampilleta Nadia Stelmashenko Tristan Meunier Jason W. A. Robinson Lisa Ibberson Maud Vinet Yann-Michel Niquet M. Fernando Gonzalez-Zalba |
author_facet |
Theodor Lundberg Jing Li Louis Hutin Benoit Bertrand David J. Ibberson Chang-Min Lee David J. Niegemann Matias Urdampilleta Nadia Stelmashenko Tristan Meunier Jason W. A. Robinson Lisa Ibberson Maud Vinet Yann-Michel Niquet M. Fernando Gonzalez-Zalba |
author_sort |
Theodor Lundberg |
title |
Spin Quintet in a Silicon Double Quantum Dot: Spin Blockade and Relaxation |
title_short |
Spin Quintet in a Silicon Double Quantum Dot: Spin Blockade and Relaxation |
title_full |
Spin Quintet in a Silicon Double Quantum Dot: Spin Blockade and Relaxation |
title_fullStr |
Spin Quintet in a Silicon Double Quantum Dot: Spin Blockade and Relaxation |
title_full_unstemmed |
Spin Quintet in a Silicon Double Quantum Dot: Spin Blockade and Relaxation |
title_sort |
spin quintet in a silicon double quantum dot: spin blockade and relaxation |
publisher |
American Physical Society |
publishDate |
2020 |
url |
https://doaj.org/article/eb9f71a0a9c8445eb900db258d6b98c5 |
work_keys_str_mv |
AT theodorlundberg spinquintetinasilicondoublequantumdotspinblockadeandrelaxation AT jingli spinquintetinasilicondoublequantumdotspinblockadeandrelaxation AT louishutin spinquintetinasilicondoublequantumdotspinblockadeandrelaxation AT benoitbertrand spinquintetinasilicondoublequantumdotspinblockadeandrelaxation AT davidjibberson spinquintetinasilicondoublequantumdotspinblockadeandrelaxation AT changminlee spinquintetinasilicondoublequantumdotspinblockadeandrelaxation AT davidjniegemann spinquintetinasilicondoublequantumdotspinblockadeandrelaxation AT matiasurdampilleta spinquintetinasilicondoublequantumdotspinblockadeandrelaxation AT nadiastelmashenko spinquintetinasilicondoublequantumdotspinblockadeandrelaxation AT tristanmeunier spinquintetinasilicondoublequantumdotspinblockadeandrelaxation AT jasonwarobinson spinquintetinasilicondoublequantumdotspinblockadeandrelaxation AT lisaibberson spinquintetinasilicondoublequantumdotspinblockadeandrelaxation AT maudvinet spinquintetinasilicondoublequantumdotspinblockadeandrelaxation AT yannmichelniquet spinquintetinasilicondoublequantumdotspinblockadeandrelaxation AT mfernandogonzalezzalba spinquintetinasilicondoublequantumdotspinblockadeandrelaxation |
_version_ |
1718394548323876864 |