Spin Quintet in a Silicon Double Quantum Dot: Spin Blockade and Relaxation

Spins in gate-defined silicon quantum dots are promising candidates for implementing large-scale quantum computing. To read the spin state of these qubits, the mechanism that has provided the highest fidelity is spin-to-charge conversion via singlet-triplet spin blockade, which can be detected in si...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Theodor Lundberg, Jing Li, Louis Hutin, Benoit Bertrand, David J. Ibberson, Chang-Min Lee, David J. Niegemann, Matias Urdampilleta, Nadia Stelmashenko, Tristan Meunier, Jason W. A. Robinson, Lisa Ibberson, Maud Vinet, Yann-Michel Niquet, M. Fernando Gonzalez-Zalba
Formato: article
Lenguaje:EN
Publicado: American Physical Society 2020
Materias:
Acceso en línea:https://doaj.org/article/eb9f71a0a9c8445eb900db258d6b98c5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:eb9f71a0a9c8445eb900db258d6b98c5
record_format dspace
spelling oai:doaj.org-article:eb9f71a0a9c8445eb900db258d6b98c52021-12-02T12:18:24ZSpin Quintet in a Silicon Double Quantum Dot: Spin Blockade and Relaxation10.1103/PhysRevX.10.0410102160-3308https://doaj.org/article/eb9f71a0a9c8445eb900db258d6b98c52020-10-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.10.041010http://doi.org/10.1103/PhysRevX.10.041010https://doaj.org/toc/2160-3308Spins in gate-defined silicon quantum dots are promising candidates for implementing large-scale quantum computing. To read the spin state of these qubits, the mechanism that has provided the highest fidelity is spin-to-charge conversion via singlet-triplet spin blockade, which can be detected in situ using gate-based dispersive sensing. In systems with a complex energy spectrum, like silicon quantum dots, accurately identifying when singlet-triplet blockade occurs is hence of major importance for scalable qubit readout. In this work, we present a description of spin-blockade physics in a tunnel-coupled silicon double quantum dot defined in the corners of a split-gate transistor. Using gate-based magnetospectroscopy, we report successive steps of spin blockade and spin-blockade lifting involving spin states with total spin angular momentum up to S=3. More particularly, we report the formation of a hybridized spin-quintet state and show triplet-quintet and quintet-septet spin blockade, enabling studies of the quintet relaxation dynamics from which we find T_{1}∼4  μs. Finally, we develop a quantum capacitance model that can be applied generally to reconstruct the energy spectrum of a double quantum dot, including the spin-dependent tunnel couplings and the energy splitting between different spin manifolds. Our results allow for the possibility of using Si complementary metal-oxide-semiconductor quantum dots as a tunable platform for studying high-spin systems.Theodor LundbergJing LiLouis HutinBenoit BertrandDavid J. IbbersonChang-Min LeeDavid J. NiegemannMatias UrdampilletaNadia StelmashenkoTristan MeunierJason W. A. RobinsonLisa IbbersonMaud VinetYann-Michel NiquetM. Fernando Gonzalez-ZalbaAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 10, Iss 4, p 041010 (2020)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
spellingShingle Physics
QC1-999
Theodor Lundberg
Jing Li
Louis Hutin
Benoit Bertrand
David J. Ibberson
Chang-Min Lee
David J. Niegemann
Matias Urdampilleta
Nadia Stelmashenko
Tristan Meunier
Jason W. A. Robinson
Lisa Ibberson
Maud Vinet
Yann-Michel Niquet
M. Fernando Gonzalez-Zalba
Spin Quintet in a Silicon Double Quantum Dot: Spin Blockade and Relaxation
description Spins in gate-defined silicon quantum dots are promising candidates for implementing large-scale quantum computing. To read the spin state of these qubits, the mechanism that has provided the highest fidelity is spin-to-charge conversion via singlet-triplet spin blockade, which can be detected in situ using gate-based dispersive sensing. In systems with a complex energy spectrum, like silicon quantum dots, accurately identifying when singlet-triplet blockade occurs is hence of major importance for scalable qubit readout. In this work, we present a description of spin-blockade physics in a tunnel-coupled silicon double quantum dot defined in the corners of a split-gate transistor. Using gate-based magnetospectroscopy, we report successive steps of spin blockade and spin-blockade lifting involving spin states with total spin angular momentum up to S=3. More particularly, we report the formation of a hybridized spin-quintet state and show triplet-quintet and quintet-septet spin blockade, enabling studies of the quintet relaxation dynamics from which we find T_{1}∼4  μs. Finally, we develop a quantum capacitance model that can be applied generally to reconstruct the energy spectrum of a double quantum dot, including the spin-dependent tunnel couplings and the energy splitting between different spin manifolds. Our results allow for the possibility of using Si complementary metal-oxide-semiconductor quantum dots as a tunable platform for studying high-spin systems.
format article
author Theodor Lundberg
Jing Li
Louis Hutin
Benoit Bertrand
David J. Ibberson
Chang-Min Lee
David J. Niegemann
Matias Urdampilleta
Nadia Stelmashenko
Tristan Meunier
Jason W. A. Robinson
Lisa Ibberson
Maud Vinet
Yann-Michel Niquet
M. Fernando Gonzalez-Zalba
author_facet Theodor Lundberg
Jing Li
Louis Hutin
Benoit Bertrand
David J. Ibberson
Chang-Min Lee
David J. Niegemann
Matias Urdampilleta
Nadia Stelmashenko
Tristan Meunier
Jason W. A. Robinson
Lisa Ibberson
Maud Vinet
Yann-Michel Niquet
M. Fernando Gonzalez-Zalba
author_sort Theodor Lundberg
title Spin Quintet in a Silicon Double Quantum Dot: Spin Blockade and Relaxation
title_short Spin Quintet in a Silicon Double Quantum Dot: Spin Blockade and Relaxation
title_full Spin Quintet in a Silicon Double Quantum Dot: Spin Blockade and Relaxation
title_fullStr Spin Quintet in a Silicon Double Quantum Dot: Spin Blockade and Relaxation
title_full_unstemmed Spin Quintet in a Silicon Double Quantum Dot: Spin Blockade and Relaxation
title_sort spin quintet in a silicon double quantum dot: spin blockade and relaxation
publisher American Physical Society
publishDate 2020
url https://doaj.org/article/eb9f71a0a9c8445eb900db258d6b98c5
work_keys_str_mv AT theodorlundberg spinquintetinasilicondoublequantumdotspinblockadeandrelaxation
AT jingli spinquintetinasilicondoublequantumdotspinblockadeandrelaxation
AT louishutin spinquintetinasilicondoublequantumdotspinblockadeandrelaxation
AT benoitbertrand spinquintetinasilicondoublequantumdotspinblockadeandrelaxation
AT davidjibberson spinquintetinasilicondoublequantumdotspinblockadeandrelaxation
AT changminlee spinquintetinasilicondoublequantumdotspinblockadeandrelaxation
AT davidjniegemann spinquintetinasilicondoublequantumdotspinblockadeandrelaxation
AT matiasurdampilleta spinquintetinasilicondoublequantumdotspinblockadeandrelaxation
AT nadiastelmashenko spinquintetinasilicondoublequantumdotspinblockadeandrelaxation
AT tristanmeunier spinquintetinasilicondoublequantumdotspinblockadeandrelaxation
AT jasonwarobinson spinquintetinasilicondoublequantumdotspinblockadeandrelaxation
AT lisaibberson spinquintetinasilicondoublequantumdotspinblockadeandrelaxation
AT maudvinet spinquintetinasilicondoublequantumdotspinblockadeandrelaxation
AT yannmichelniquet spinquintetinasilicondoublequantumdotspinblockadeandrelaxation
AT mfernandogonzalezzalba spinquintetinasilicondoublequantumdotspinblockadeandrelaxation
_version_ 1718394548323876864