Spin Quintet in a Silicon Double Quantum Dot: Spin Blockade and Relaxation
Spins in gate-defined silicon quantum dots are promising candidates for implementing large-scale quantum computing. To read the spin state of these qubits, the mechanism that has provided the highest fidelity is spin-to-charge conversion via singlet-triplet spin blockade, which can be detected in si...
        Enregistré dans:
      
    
                  | Auteurs principaux: | Theodor Lundberg, Jing Li, Louis Hutin, Benoit Bertrand, David J. Ibberson, Chang-Min Lee, David J. Niegemann, Matias Urdampilleta, Nadia Stelmashenko, Tristan Meunier, Jason W. A. Robinson, Lisa Ibberson, Maud Vinet, Yann-Michel Niquet, M. Fernando Gonzalez-Zalba | 
|---|---|
| Format: | article | 
| Langue: | EN | 
| Publié: | American Physical Society    
    
      2020 | 
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/eb9f71a0a9c8445eb900db258d6b98c5 | 
| Tags: | Ajouter un tag 
      Pas de tags, Soyez le premier à ajouter un tag!
   | 
Documents similaires
- 
                
        
          Spin blockade and phonon bottleneck for hot electron relaxation observed in n-doped colloidal quantum dots        
                  
 par: Junhui Wang, et autres
 Publié: (2021)
- 
                
        
          Gate-reflectometry dispersive readout and coherent control of a spin qubit in silicon        
                  
 par: A. Crippa, et autres
 Publié: (2019)
- 
                
        
          Effect of spin relaxations on the spin mixing conductances for a bilayer structure        
                  
 par: D. X. Li, et autres
 Publié: (2018)
- 
                
        
          Relativistic spin hydrodynamics with torsion and linear response theory for spin relaxation        
                  
 par: Masaru Hongo, et autres
 Publié: (2021)
- 
                
        
          Spontaneous formation and relaxation of spin domains in antiferromagnetic spin-1 condensates        
                  
 par: K. Jiménez-García, et autres
 Publié: (2019)