Nonlinear Autoregressive Model With Exogenous Input Recurrent Neural Network to Predict Satellites’ Clock Bias
The prediction of Satellites’ Clock Bias (SCB) plays an important role in optimizing the clock bias parameters in navigation messages, meeting the requirements of real-time dynamic precise point positioning and providing the prior information required for satellite autonomous navigation....
Guardado en:
Autores principales: | Yifeng Liang, Jiangning Xu, Fangneng Li, Pengfei Jiang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/eba0dd34d9074242b021ed354fc37c5c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Identification of BDS Satellite Clock Periodic Signals Based on Lomb-Scargle Power Spectrum and Continuous Wavelet Transform
por: Jacek Kudrys, et al.
Publicado: (2021) -
Wastewater flow forecasting model based on the nonlinear autoregressive with exogenous inputs (NARX) neural network
por: Khalid El Ghazouli, et al.
Publicado: (2021) -
Witnesses of the Time: A survey of clock rooms, clock towers and façade clocks in Istanbul in the Ottoman Era
por: Kaan Üçsu
Publicado: (2017) -
Analysis of differential code biases and inter-system biases for GPS and NavIC satellite constellations
por: K. Siva Krishna, et al.
Publicado: (2021) -
Characteristics of the short-term temporal variations of multi-constellation and multi-frequency GNSS receiver differential phase biases
por: MI Xiaolong, et al.
Publicado: (2021)