Two crystal structures of Bombyx mori lipoprotein 3 - structural characterization of a new 30-kDa lipoprotein family member.

The 30-kDa family of lipoproteins from insect hemolymph has been the focus of a number of studies over the last few years. Recently, four crystal structures of Bombyx mori lipoprotein 7 have been determined. Here we report two crystal structures of another member of the 30-kDa lipoprotein family, Bo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Agnieszka J Pietrzyk, Anna Bujacz, Jochen Mueller-Dieckmann, Malgorzata Lochynska, Mariusz Jaskolski, Grzegorz Bujacz
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/ebb9b9ced3d64368848b1d5d66d43f1b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The 30-kDa family of lipoproteins from insect hemolymph has been the focus of a number of studies over the last few years. Recently, four crystal structures of Bombyx mori lipoprotein 7 have been determined. Here we report two crystal structures of another member of the 30-kDa lipoprotein family, Bombyx mori lipoprotein 3 (Bmlp3). The protein was isolated from its natural source, mulberry silkworm hemolymph. It crystallized in two different crystal forms, Bmlp3-p21 (space group P21) and Bmlp3-c2 (space group C2). The crystal structures were solved by molecular replacement using the coordinates of Bmlp7 as a starting model. The crystals of Bmlp3-p21 diffracted X-rays to 2.4 Å resolution and of Bmlp3-c2 to 2.1 Å resolution. Bmlp3 has an overall fold characteristic of 30-kDa lipoproteins, with a VHS-type N-terminal domain and β-trefoil C-terminal domain. Structural comparison of Bmlp3 and Bmlp7 shows that the loops present in the C-terminal domain are flexible and participate in dimer formation. Additionally, new putative binding sites of Bmlp3 have been analyzed in detail and the electrostatic potential of the protein surface at physiological pH 7.4 conditions has been calculated. The results of these calculations are the starting point for an explanation of the recently reported cell-penetrating properties of the 30-kDa lipoproteins.