Multiple timescales of normalized value coding underlie adaptive choice behavior

Previous work has shown that the neural representation of value adapts to the recent history of rewards. Here, the authors report that a computational model based on divisive normalization over multiple timescales can explain changes in value coding driven by changes in the reward statistics.

Guardado en:
Detalles Bibliográficos
Autores principales: Jan Zimmermann, Paul W. Glimcher, Kenway Louie
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/ebbbfa3c179d4de9aa41eb389b29691e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Previous work has shown that the neural representation of value adapts to the recent history of rewards. Here, the authors report that a computational model based on divisive normalization over multiple timescales can explain changes in value coding driven by changes in the reward statistics.