Computational analysis of fused co-expression networks for the identification of candidate cancer gene biomarkers
Abstract The complexity of cancer has always been a huge issue in understanding the source of this disease. However, by appreciating its complexity, we can shed some light on crucial gene associations across and in specific cancer types. In this study, we develop a general framework to infer relevan...
Enregistré dans:
Auteurs principaux: | Sara Pidò, Gaia Ceddia, Marco Masseroli |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/ebc80e4041a64c0186c0c1816ed19791 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Dynamically expressed genes provide candidate viability biomarkers in a model coccidian.
par: Matthew S Tucker, et autres
Publié: (2021) -
Synthesis of Fe(II)/Co(II)-Fused Triphenyl Porphyrin Dimer as Candidate for Oxygen Reduction Reaction Catalyst
par: Atmanto Heru Wibowo, et autres
Publié: (2021) -
Identification of Gene Co-Expression Networks Associated with Consensus Molecular Subtype-1 of Colorectal Cancer
par: Sha’Kayla K. Nunez, et autres
Publié: (2021) -
The Identification of Candidate Biomarkers and Pathways in Atherosclerosis by Integrated Bioinformatics Analysis
par: Youwei Lu, et autres
Publié: (2021) -
Disease biomarker identification from gene network modules for metastasized breast cancer
par: Pooja Sharma, et autres
Publié: (2017)