Antiapoptotic and Anti-Inflammatory Effects of CPCGI in Rats with Traumatic Brain Injury

Fei Niu,1,* Ke Qian,2,* Hongyan Qi,3 Yumei Zhao,4 Yingying Jiang,4 Ming Sun4 1Department of Neurotrauma, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People’s Republic of China; 2Department of Neurosur...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Niu F, Qian K, Qi H, Zhao Y, Jiang Y, Sun M
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2020
Materias:
Acceso en línea:https://doaj.org/article/ebc8cc2642744742a466d6ab250cc598
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ebc8cc2642744742a466d6ab250cc598
record_format dspace
spelling oai:doaj.org-article:ebc8cc2642744742a466d6ab250cc5982021-12-02T15:10:13ZAntiapoptotic and Anti-Inflammatory Effects of CPCGI in Rats with Traumatic Brain Injury1178-2021https://doaj.org/article/ebc8cc2642744742a466d6ab250cc5982020-12-01T00:00:00Zhttps://www.dovepress.com/antiapoptotic-and-anti-inflammatory-effects-of-cpcgi-in-rats-with-trau-peer-reviewed-article-NDThttps://doaj.org/toc/1178-2021Fei Niu,1,* Ke Qian,2,* Hongyan Qi,3 Yumei Zhao,4 Yingying Jiang,4 Ming Sun4 1Department of Neurotrauma, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People’s Republic of China; 2Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People’s Republic of China; 3Department of Acupuncture, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang City 222000, Jiangsu Province, People’s Republic of China; 4Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People’s Republic of China*These authors contributed equally to this workCorrespondence: Ming SunDepartment of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing 100070, People’s Republic of ChinaTel/Fax + 86-10-59975497Email sunming999@yahoo.comBackground: Compound porcine cerebroside and ganglioside injection (CPCGI) has been used for the treatment of certain brain disorders. Apoptosis and inflammation were reported to be involved in the pathogenesis of traumatic brain injury (TBI). Therefore, this study primarily investigated the effects of CPCGI on mitochondrial apoptotic signaling and PARP/NF-κB inflammatory signaling in a rat model of controlled cortical impact (CCI).Materials and Methods: CPCGI (0.6 mL/kg) was administered intraperitoneally 30 min after the induction of CCI. Mitochondrial apoptotic signaling and PARP/NF-κB inflammatory signaling were evaluated 24 h after CCI, and apoptotic cell death, neutrophil infiltration, and astrocyte and microglial activation were determined by TUNEL and immunofluorescent staining 3 days after CCI.Results: 1) CPCGI markedly enhanced cytosolic and mitochondrial Bcl-xL levels, the mitochondrial Bcl-xL/Bax ratio, and mitochondrial cytochrome (cyt) c levels and reduced cytosolic cyt c levels, caspase-3 activity, and nuclear AIF levels in brain tissues after traumatic injury; however, CPCGI had no significant effects on cytosolic or mitochondrial Bax levels, the cytosolic Bcl-xL/Bax ratio, or mitochondrial AIF levels. Moreover, CPCGI markedly reduced the TUNEL staining score in the contusion region. 2) CPCGI markedly reduced cytosolic and nuclear PARP levels and nuclear NF-κB p65 levels in brain tissues after traumatic injury but had no significant effect on cytosolic NF-κB p65 levels. In addition, CPCGI markedly reduced caspase-1 activity and the levels of caspase-1, ICAM-1, TNF-α, and IL-1β in brain tissues after traumatic injury and decreased the immunoreactivities of neutrophils, GFAP and Iba-1 in the region of CCI-induced contusion.Conclusion: These data suggest that CPCGI can reduce brain injury due to trauma by suppressing both mitochondrial apoptotic signaling and PARP/NF-κB inflammatory signaling.Keywords: compound porcine cerebroside and ganglioside injection, traumatic brain injury, mitochondrial apoptotic signaling, PARP/NF-κB inflammatory signalingNiu FQian KQi HZhao YJiang YSun MDove Medical Pressarticlecompound porcine cerebroside and ganglioside injectiontraumatic brain injurymitochondrial apoptotic signalingparp/nf-b inflammatory signalingNeurosciences. Biological psychiatry. NeuropsychiatryRC321-571Neurology. Diseases of the nervous systemRC346-429ENNeuropsychiatric Disease and Treatment, Vol Volume 16, Pp 2975-2987 (2020)
institution DOAJ
collection DOAJ
language EN
topic compound porcine cerebroside and ganglioside injection
traumatic brain injury
mitochondrial apoptotic signaling
parp/nf-b inflammatory signaling
Neurosciences. Biological psychiatry. Neuropsychiatry
RC321-571
Neurology. Diseases of the nervous system
RC346-429
spellingShingle compound porcine cerebroside and ganglioside injection
traumatic brain injury
mitochondrial apoptotic signaling
parp/nf-b inflammatory signaling
Neurosciences. Biological psychiatry. Neuropsychiatry
RC321-571
Neurology. Diseases of the nervous system
RC346-429
Niu F
Qian K
Qi H
Zhao Y
Jiang Y
Sun M
Antiapoptotic and Anti-Inflammatory Effects of CPCGI in Rats with Traumatic Brain Injury
description Fei Niu,1,* Ke Qian,2,* Hongyan Qi,3 Yumei Zhao,4 Yingying Jiang,4 Ming Sun4 1Department of Neurotrauma, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People’s Republic of China; 2Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People’s Republic of China; 3Department of Acupuncture, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang City 222000, Jiangsu Province, People’s Republic of China; 4Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People’s Republic of China*These authors contributed equally to this workCorrespondence: Ming SunDepartment of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing 100070, People’s Republic of ChinaTel/Fax + 86-10-59975497Email sunming999@yahoo.comBackground: Compound porcine cerebroside and ganglioside injection (CPCGI) has been used for the treatment of certain brain disorders. Apoptosis and inflammation were reported to be involved in the pathogenesis of traumatic brain injury (TBI). Therefore, this study primarily investigated the effects of CPCGI on mitochondrial apoptotic signaling and PARP/NF-κB inflammatory signaling in a rat model of controlled cortical impact (CCI).Materials and Methods: CPCGI (0.6 mL/kg) was administered intraperitoneally 30 min after the induction of CCI. Mitochondrial apoptotic signaling and PARP/NF-κB inflammatory signaling were evaluated 24 h after CCI, and apoptotic cell death, neutrophil infiltration, and astrocyte and microglial activation were determined by TUNEL and immunofluorescent staining 3 days after CCI.Results: 1) CPCGI markedly enhanced cytosolic and mitochondrial Bcl-xL levels, the mitochondrial Bcl-xL/Bax ratio, and mitochondrial cytochrome (cyt) c levels and reduced cytosolic cyt c levels, caspase-3 activity, and nuclear AIF levels in brain tissues after traumatic injury; however, CPCGI had no significant effects on cytosolic or mitochondrial Bax levels, the cytosolic Bcl-xL/Bax ratio, or mitochondrial AIF levels. Moreover, CPCGI markedly reduced the TUNEL staining score in the contusion region. 2) CPCGI markedly reduced cytosolic and nuclear PARP levels and nuclear NF-κB p65 levels in brain tissues after traumatic injury but had no significant effect on cytosolic NF-κB p65 levels. In addition, CPCGI markedly reduced caspase-1 activity and the levels of caspase-1, ICAM-1, TNF-α, and IL-1β in brain tissues after traumatic injury and decreased the immunoreactivities of neutrophils, GFAP and Iba-1 in the region of CCI-induced contusion.Conclusion: These data suggest that CPCGI can reduce brain injury due to trauma by suppressing both mitochondrial apoptotic signaling and PARP/NF-κB inflammatory signaling.Keywords: compound porcine cerebroside and ganglioside injection, traumatic brain injury, mitochondrial apoptotic signaling, PARP/NF-κB inflammatory signaling
format article
author Niu F
Qian K
Qi H
Zhao Y
Jiang Y
Sun M
author_facet Niu F
Qian K
Qi H
Zhao Y
Jiang Y
Sun M
author_sort Niu F
title Antiapoptotic and Anti-Inflammatory Effects of CPCGI in Rats with Traumatic Brain Injury
title_short Antiapoptotic and Anti-Inflammatory Effects of CPCGI in Rats with Traumatic Brain Injury
title_full Antiapoptotic and Anti-Inflammatory Effects of CPCGI in Rats with Traumatic Brain Injury
title_fullStr Antiapoptotic and Anti-Inflammatory Effects of CPCGI in Rats with Traumatic Brain Injury
title_full_unstemmed Antiapoptotic and Anti-Inflammatory Effects of CPCGI in Rats with Traumatic Brain Injury
title_sort antiapoptotic and anti-inflammatory effects of cpcgi in rats with traumatic brain injury
publisher Dove Medical Press
publishDate 2020
url https://doaj.org/article/ebc8cc2642744742a466d6ab250cc598
work_keys_str_mv AT niuf antiapoptoticandantiinflammatoryeffectsofcpcgiinratswithtraumaticbraininjury
AT qiank antiapoptoticandantiinflammatoryeffectsofcpcgiinratswithtraumaticbraininjury
AT qih antiapoptoticandantiinflammatoryeffectsofcpcgiinratswithtraumaticbraininjury
AT zhaoy antiapoptoticandantiinflammatoryeffectsofcpcgiinratswithtraumaticbraininjury
AT jiangy antiapoptoticandantiinflammatoryeffectsofcpcgiinratswithtraumaticbraininjury
AT sunm antiapoptoticandantiinflammatoryeffectsofcpcgiinratswithtraumaticbraininjury
_version_ 1718387727415640064