Age-related changes following in vitro stimulation with Rhodococcus equi of peripheral blood leukocytes from neonatal foals.
Rhodococcus equi is an intracellular bacterium primarily known as an equine pathogen that infects young foals causing a pyogranulomatuous pneumonia. The molecular mechanisms mediating the immune response of foals to R. equi are not fully elucidated. Hence, global genomic high-throughput tools like g...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ebcd14b6a33f4b7fb39a6dbcdf9b7352 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Rhodococcus equi is an intracellular bacterium primarily known as an equine pathogen that infects young foals causing a pyogranulomatuous pneumonia. The molecular mechanisms mediating the immune response of foals to R. equi are not fully elucidated. Hence, global genomic high-throughput tools like gene expression microarrays might identify age-related gene expression signatures and molecular pathways that contribute to the immune mechanisms underlying the inherent susceptibility of foals to disease caused by R. equi. The objectives of this study were 2-fold: 1) to compare the expression profiles at specific ages of blood leukocytes from foals stimulated with virulent R. equi with those of unstimulated leukocytes; and, 2) to characterize the age-related changes in the gene expression profile associated with blood leukocytes in response to stimulation with virulent R. equi. Peripheral blood leukocytes were obtained from 6 foals within 24 hours (h) of birth (day 1) and 2, 4, and 8 weeks after birth. The samples were split, such that half were stimulated with live virulent R. equi, and the other half served as unstimulated control. RNA was extracted and the generated cDNA was labeled with fluorescent dyes for microarray hybridizations using an equine microarray. Our findings suggest that there is age-related differential expression of genes involved in host immune response and immunity. We found induction of genes critical for host immunity against pathogens (MHC class II) only at the later time-points (compared to birth). While it appears that foals up to 8-weeks of age are able to initiate a protective inflammatory response against the bacteria, relatively decreased expression of various other immune-related genes points toward inherent diminished immune responses closer to birth. These genes and pathways may contribute to disease susceptibility in foals if infected early in life, and might thus be targeted for developing preventative or therapeutic strategies. |
---|