Automated Ground Truth Generation for Learning-Based Crack Detection on Concrete Surfaces
This article introduces an automated data-labeling approach for generating crack ground truths (GTs) within concrete images. The main algorithm includes generating first-round GTs, pre-training a deep learning-based model, and generating second-round GTs. On the basis of the generated second-round G...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ebcf0a49da7240aa9738c10a4bfdbc2c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | This article introduces an automated data-labeling approach for generating crack ground truths (GTs) within concrete images. The main algorithm includes generating first-round GTs, pre-training a deep learning-based model, and generating second-round GTs. On the basis of the generated second-round GTs of the training data, a learning-based crack detection model can be trained in a self-supervised manner. The pre-trained deep learning-based model is effective for crack detection after it is re-trained using the second-round GTs. The main contribution of this study is the proposal of an automated GT generation process for training a crack detection model at the pixel level. Experimental results show that the second-round GTs are similar to manually marked labels. Accordingly, the cost of implementing learning-based methods is reduced significantly because data labeling by humans is not necessitated. |
---|